自编码
计算机科学
编码器
图形
潜变量
水准点(测量)
人工智能
特征学习
深度学习
理论计算机科学
无监督学习
机器学习
模式识别(心理学)
算法
操作系统
大地测量学
地理
作者
Thomas Kipf,Max Welling
出处
期刊:Cornell University - arXiv
日期:2016-11-21
被引量:972
摘要
We introduce the variational graph auto-encoder (VGAE), a framework for unsupervised learning on graph-structured data based on the variational auto-encoder (VAE). This model makes use of latent variables and is capable of learning interpretable latent representations for undirected graphs. We demonstrate this model using a graph convolutional network (GCN) encoder and a simple inner product decoder. Our model achieves competitive results on a link prediction task in citation networks. In contrast to most existing models for unsupervised learning on graph-structured data and link prediction, our model can naturally incorporate node features, which significantly improves predictive performance on a number of benchmark datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI