A parametric model of child body shape in seated postures

人体躯干 百分位 参数统计 主成分分析 体型 统计 回归分析 参数化模型 数学 航程(航空) 模拟 计算机科学 工程类 人工智能 医学 解剖 航空航天工程
作者
Byoung-Keon D. Park,Sheila M. Ebert,Matthew P. Reed
出处
期刊:Traffic Injury Prevention [Informa]
卷期号:18 (5): 533-536 被引量:25
标识
DOI:10.1080/15389588.2016.1269173
摘要

The shape of the current physical and computational surrogates of children used for restraint system assessments is based largely on standard anthropometric dimensions. These scalar dimensions provide valuable information on the overall size of the individual but do not provide good guidance on shape or posture. This study introduced the development of a parametric model that statistically predicts individual child body shapes in seated postures with a few given parameters.Surface geometry data from a laser scanner of children ages 3 to 11 (n = 135) were standardized by a 2-level fitting method using intermediate templates. The standardized data were analyzed by principal component analysis (PCA) to efficiently describe the body shape variance. Parameters such as stature, body mass index, erect sitting height, and 2 posture variables related to torso recline and lumbar spine flexion were associated with the PCA model using regression.When the original scan data were compared with the predictions of the model using the given subject dimensions, the average root mean square error for the torso was 9.5 mm, and the 95th percentile error was 17.35 mm.For the first time, a statistical model of child body shapes in seated postures is available. This parametric model allows the generation of an infinite number of virtual children spanning a wide range of body sizes and postures. The results have broad applicability in product design and safety analysis. Future work is needed to improve the representation of hands and feet and to extend the age range of the model. The model presented in this article is publicly available online through HumanShape.org.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月儿发布了新的文献求助10
刚刚
落落完成签到 ,获得积分10
刚刚
羊羊完成签到 ,获得积分20
刚刚
宁听白发布了新的文献求助10
1秒前
rookie_b0完成签到,获得积分10
1秒前
1秒前
wangyanyan完成签到,获得积分20
1秒前
标致小伙完成签到,获得积分10
2秒前
2秒前
Harlotte发布了新的文献求助10
3秒前
3秒前
潦草发布了新的文献求助10
3秒前
丘比特应助Ll采纳,获得10
4秒前
4秒前
yu完成签到 ,获得积分10
4秒前
小蘑菇应助zzznznnn采纳,获得10
4秒前
Orange应助俊秀的白猫采纳,获得30
5秒前
深情安青应助小可采纳,获得10
5秒前
5秒前
情怀应助pearl采纳,获得10
5秒前
6秒前
所所应助cybbbbbb采纳,获得10
6秒前
果汁发布了新的文献求助10
6秒前
7秒前
7秒前
Lucas应助柚子采纳,获得10
7秒前
MADKAI发布了新的文献求助10
7秒前
8秒前
爆米花应助咕咕咕采纳,获得10
8秒前
zxy发布了新的文献求助10
8秒前
9秒前
醉人的仔发布了新的文献求助10
9秒前
daguan完成签到,获得积分10
9秒前
桐桐应助nikai采纳,获得10
9秒前
10秒前
11秒前
123完成签到,获得积分10
11秒前
善良香岚发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759