Combinatorial development of Cu2SnS3 as an earth abundant photovoltaic absorber

光伏系统 光伏 材料科学 吸收(声学) 薄膜 可扩展性 兴奋剂 光电子学 纳米技术 计算机科学 复合材料 电气工程 工程类 数据库
作者
Lauryn L. Baranowski
摘要

The of high efficiency, earth abundant photovoltaic absorbers is critical if photovoltaics are to be implemented on the TW scale. Although traditional thin films absorbers such as Cu(In,Ga)Se2 and CdTe have achieved over 20% device efficiencies, the ultimately scalability of these devices may be limited by elemental scarcity and toxicity issues. To date, the most successful earth abundant thin film absorber is Cu2ZnSn(S,Se)4, which has achieved 12.6% efficiency as of 2014. However, chemical complexity and disorder issues with this material have made the path to higher efficiency CZTSSe devices unclear. As a result, many researchers are now exploring alternative earth abundant absorber materials. In this thesis, we apply our development methodology to the exploration of alternative photovoltaic absorbers. The rapid (RD) methodology, consisting of exploration, research, and stages, uses complementary theory and experiment to assess candidate materials and down-select in each stage. The overall result is that, in the time span of ~2-3 years, we are able to rapidly go from tens of possible absorber materials to 1-2 working PV device prototypes. Here, we demonstrate the RD approach as applied to the Cu-Sn-S system. We begin our investigation of the Cu-Sn-S system by evaluating the thermodynamic stability, electrical transport, electronic structure, and optical and defect properties of candidate materials using complementary theory and experiment. We find that Cu2SnS3 is the most promising absorber candidate because of its strong optical absorption, tunable doping, and wide stability range. Our other candidate compounds suffer from serious flaws that preclude them from being successful photovoltaic absorbers, including too high experimental conductivity (Cu4SnS4), or poor hole transport and low absorption coefficient (Cu4Sn7S16). Next, we investigate the doping and defect physics of Cu2SnS3. We identify the origins of the changes in doping in sputtered cubic Cu2SnS3 thin films using combinatorial experiments and first-principles theory. High S chemical potential during deposition decreases the enthalpy of formation of Cu vacancies, which are the dominant acceptor defect in Cu2SnS3. Unexpectedly, under Cu-rich conditions, alloying with an isostructural (cubic) metallic Cu3SnS4 phase occurs, causing high levels of p-type doping. Both of these effects lead to undesirably high electrical conductivity, thus Cu2SnS3 films must be grown both S- and Cu-poor in order to achieve moderate hole concentrations. To understand the effects of structural disorder on the transport properties in Cu2SnS3 we develop synthetic techniques to control this disorder, and observe improvements in the majority carrier (hole) transport. However, when the minority carrier (electron) transport was investigated, minimal differences were observed between the ordered and disordered Cu2SnS3. By combining these results with first-principles and Monte Carlo theoretical calculations, we are able to conclude that even…

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫威完成签到 ,获得积分10
1秒前
shuangfeng1853完成签到 ,获得积分10
4秒前
DraGon完成签到,获得积分10
11秒前
伊yan完成签到 ,获得积分10
11秒前
哈哈哈哈完成签到 ,获得积分10
12秒前
liguanyu1078完成签到,获得积分10
14秒前
研友_LMBAXn完成签到,获得积分10
15秒前
缥缈的幻雪完成签到 ,获得积分10
24秒前
耍酷寻双完成签到 ,获得积分10
27秒前
xfy完成签到,获得积分10
27秒前
Fischl完成签到 ,获得积分10
28秒前
shuyu完成签到 ,获得积分10
29秒前
康复小白完成签到 ,获得积分10
34秒前
fire应助Anders采纳,获得50
35秒前
诸青梦完成签到 ,获得积分10
35秒前
38秒前
GTRK完成签到 ,获得积分10
41秒前
mm完成签到 ,获得积分10
41秒前
哇哈哈哈哈哈完成签到 ,获得积分10
44秒前
肖雪依发布了新的文献求助30
45秒前
拓跋半雪完成签到,获得积分10
45秒前
yy完成签到 ,获得积分10
49秒前
yu_z完成签到 ,获得积分10
1分钟前
mike2012完成签到 ,获得积分10
1分钟前
东方欲晓完成签到 ,获得积分0
1分钟前
wangye完成签到 ,获得积分10
1分钟前
肖雪依完成签到,获得积分20
1分钟前
JYY完成签到 ,获得积分10
1分钟前
坚强的铅笔完成签到 ,获得积分10
1分钟前
831143完成签到 ,获得积分0
1分钟前
下山虎完成签到 ,获得积分10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
1分钟前
haochi完成签到,获得积分10
1分钟前
1234567完成签到,获得积分10
1分钟前
繁荣的代秋完成签到 ,获得积分10
1分钟前
HRZ完成签到 ,获得积分10
1分钟前
招财小茗完成签到,获得积分20
1分钟前
小路完成签到,获得积分10
1分钟前
CYYDNDB完成签到 ,获得积分10
1分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477524
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110293
捐赠科研通 2760474
什么是DOI,文献DOI怎么找? 1514940
邀请新用户注册赠送积分活动 700486
科研通“疑难数据库(出版商)”最低求助积分说明 699617