Local binary features for texture classification: Taxonomy and experimental study

局部二进制模式 人工智能 计算机科学 模式识别(心理学) 稳健性(进化) 抓住 卷积神经网络 二进制数 上下文图像分类 机器学习 数据挖掘 图像(数学) 数学 直方图 程序设计语言 化学 基因 算术 生物化学
作者
Li Liu,Paul Fieguth,Yulan Guo,Xiaogang Wang,Matti Pietikäinen
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:62: 135-160 被引量:336
标识
DOI:10.1016/j.patcog.2016.08.032
摘要

Local Binary Patterns (LBP) have emerged as one of the most prominent and widely studied local texture descriptors. Truly a large number of LBP variants has been proposed, to the point that it can become overwhelming to grasp their respective strengths and weaknesses, and there is a need for a comprehensive study regarding the prominent LBP-related strategies. New types of descriptors based on multistage convolutional networks and deep learning have also emerged. In different papers the performance comparison of the proposed methods to earlier approaches is mainly done with some well-known texture datasets, with differing classifiers and testing protocols, and often not using the best sets of parameter values and multiple scales for the comparative methods. Very important aspects such as computational complexity and effects of poor image quality are often neglected. In this paper, we provide a systematic review of current LBP variants and propose a taxonomy to more clearly group the prominent alternatives. Merits and demerits of the various LBP features and their underlying connections are also analyzed. We perform a large scale performance evaluation for texture classification, empirically assessing forty texture features including thirty two recent most promising LBP variants and eight non-LBP descriptors based on deep convolutional networks on thirteen widely-used texture datasets. The experiments are designed to measure their robustness against different classification challenges, including changes in rotation, scale, illumination, viewpoint, number of classes, different types of image degradation, and computational complexity. The best overall performance is obtained for the Median Robust Extended Local Binary Pattern (MRELBP) feature. For textures with very large appearance variations, Fisher vector pooling of deep Convolutional Neural Networks is clearly the best, but at the cost of very high computational complexity. The sensitivity to image degradations and computational complexity are among the key problems for most of the methods considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Scarlett发布了新的文献求助10
刚刚
lixian发布了新的文献求助10
刚刚
情怀应助俊逸的蛋挞采纳,获得10
刚刚
zhuhan发布了新的文献求助10
1秒前
历史真相发布了新的文献求助10
2秒前
田様应助小火苗采纳,获得10
2秒前
开放雪曼完成签到,获得积分10
3秒前
小张很乖完成签到,获得积分20
3秒前
可爱的函函应助韩躲躲采纳,获得10
4秒前
驿寄梅花完成签到 ,获得积分10
4秒前
5秒前
MiYou完成签到,获得积分10
5秒前
6秒前
丘比特应助子皿采纳,获得10
6秒前
研友_Z729Mn完成签到,获得积分10
6秒前
谷蓝完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助30
7秒前
大鹅完成签到,获得积分10
7秒前
8秒前
所所应助NJUSTJAY采纳,获得10
9秒前
9秒前
loomsis发布了新的文献求助10
10秒前
帅哥完成签到,获得积分10
10秒前
齐静春完成签到,获得积分10
10秒前
11秒前
12秒前
yy完成签到 ,获得积分10
12秒前
你好完成签到,获得积分10
12秒前
maox1aoxin应助风帆展采纳,获得50
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
lw发布了新的文献求助10
13秒前
8464368发布了新的文献求助10
14秒前
共享精神应助荔枝草莓酱采纳,获得10
15秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
小杨同学应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得20
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662771
求助须知:如何正确求助?哪些是违规求助? 3223591
关于积分的说明 9752272
捐赠科研通 2933546
什么是DOI,文献DOI怎么找? 1606137
邀请新用户注册赠送积分活动 758279
科研通“疑难数据库(出版商)”最低求助积分说明 734771