NLS公司
核定位序列
转染
核运输
内体
DNA
基因传递
分子生物学
细胞生物学
生物
质粒
细胞内
细胞质
化学
细胞核
生物化学
基因
作者
Yingying Xu,Wei Liang,Yingshan Qiu,Marco Cespi,Gianni Palmieri,A. James Mason,Jenny K.W. Lam
标识
DOI:10.1021/acs.molpharmaceut.6b00338
摘要
The major intracellular barriers associated with DNA delivery using nonviral vectors are inefficient endosomal/lysosomal escape and poor nuclear uptake. LAH4-L1, a pH responsive cationic amphipathic peptide, is an efficient DNA delivery vector that promotes the release of nucleic acid into cytoplasm through endosomal escape. Here we further enhance the DNA transfection efficiency of LAH4-L1 by incorporating nuclear localizing signal (NLS) to promote nuclear importation. Four NLSs were investigated: Simian virus 40 (SV40) large T-antigen derived NLS, nucleoplasmin targeting signal, M9 sequence, and the reverse SV40 derived NLS. All peptides tested were able to form positively charged nanosized complexes with DNA. Significant improvement in DNA transfection was observed in slow-dividing epithelial cancer cells (Calu-3), macrophages (RAW264.7), dendritic cells (JAWSII), and thymidine-induced growth-arrested cells, but not in rapidly dividing cells (A549). Among the four NLS-modified peptides, PK1 (modified with SV40 derived NLS) and PK2 (modified with reverse SV40 derived NLS) were the most consistent in improving DNA transfection; up to a 10-fold increase in gene expression was observed for PK1 and PK2 over the unmodified LAH4-L1. Additionally PK1 and PK2 were shown to enhance cellular uptake as well as nuclear entry of DNA. Overall, we show that the incorporation of SV40 derived NLS, in particular, to LAH4-L1 is a promising strategy to improve DNA delivery efficiency in slow-dividing cells and dendritic cells, with development potential for in vivo applications and as a DNA vaccine carrier.
科研通智能强力驱动
Strongly Powered by AbleSci AI