Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

微囊藻毒素 Geosmin公司 富营养化 环境科学 水华 水质 丰度(生态学) 蓝藻 支持向量机 微囊藻 生态学 浮游植物 气味 机器学习 生物 计算机科学 营养物 遗传学 神经科学 细菌
作者
Ted D. Harris,Jennifer L. Graham
出处
期刊:Lake and Reservoir Management [U.S. Environmental Protection Agency, Office of Water Regulations and Standards]
卷期号:33 (1): 32-48 被引量:58
标识
DOI:10.1080/10402381.2016.1263694
摘要

Harris TD, Graham JL. 2017. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset. Lake Reserve Manage. 33:32-48.Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助火星上手机采纳,获得10
刚刚
整齐醉冬发布了新的文献求助10
1秒前
1秒前
NoMi完成签到,获得积分10
1秒前
1秒前
着急的千山完成签到 ,获得积分10
1秒前
称心翠容完成签到,获得积分10
1秒前
落后井发布了新的文献求助100
2秒前
橘舰长完成签到,获得积分10
2秒前
2秒前
小二郎应助冰淇淋啦啦啦采纳,获得10
2秒前
dyy123发布了新的文献求助10
3秒前
思源应助灵巧墨镜采纳,获得10
3秒前
FashionBoy应助平常的小郭采纳,获得10
3秒前
林子完成签到,获得积分10
3秒前
科研通AI6应助回颜轻生采纳,获得10
4秒前
大橙子完成签到,获得积分10
4秒前
4秒前
4秒前
歼击机88完成签到,获得积分10
4秒前
YY完成签到,获得积分10
4秒前
NexusExplorer应助vvan采纳,获得10
4秒前
4秒前
浮游应助wangli采纳,获得10
6秒前
霁雨花君发布了新的文献求助10
6秒前
meng发布了新的文献求助10
6秒前
砥砺完成签到,获得积分10
6秒前
浩浩发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
8秒前
Apricity发布了新的文献求助10
8秒前
9秒前
qiqiqi发布了新的文献求助10
10秒前
10秒前
碧蓝世界完成签到 ,获得积分10
10秒前
科研通AI2S应助Hammery采纳,获得10
11秒前
爱学习的小张完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513