Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

微囊藻毒素 Geosmin公司 富营养化 环境科学 水华 水质 丰度(生态学) 蓝藻 支持向量机 微囊藻 生态学 浮游植物 气味 机器学习 生物 计算机科学 营养物 遗传学 神经科学 细菌
作者
Ted D. Harris,Jennifer L. Graham
出处
期刊:Lake and Reservoir Management [U.S. Environmental Protection Agency, Office of Water Regulations and Standards]
卷期号:33 (1): 32-48 被引量:58
标识
DOI:10.1080/10402381.2016.1263694
摘要

Harris TD, Graham JL. 2017. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset. Lake Reserve Manage. 33:32-48.Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kfc19960203完成签到,获得积分10
刚刚
脏脏鲤完成签到 ,获得积分10
刚刚
刚刚
sherry发布了新的文献求助10
刚刚
matchstick发布了新的文献求助10
1秒前
Yamsh发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
CherylZhao发布了新的文献求助10
3秒前
上官若男应助快乐寄风采纳,获得10
3秒前
大个应助lkj采纳,获得10
3秒前
Mine_cherry应助huanglie采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
sinmon完成签到,获得积分10
3秒前
3秒前
小白菜发布了新的文献求助20
4秒前
CodeCraft应助怕黑的乐蓉采纳,获得10
4秒前
gsl发布了新的文献求助10
4秒前
4秒前
4秒前
Owen应助南音采纳,获得10
5秒前
桐桐应助南音采纳,获得10
5秒前
bkagyin应助南音采纳,获得10
5秒前
充电宝应助南音采纳,获得10
5秒前
善学以致用应助南音采纳,获得10
5秒前
完美世界应助南音采纳,获得10
5秒前
SciGPT应助南音采纳,获得10
5秒前
共享精神应助南音采纳,获得10
5秒前
Hello应助南音采纳,获得10
5秒前
缓慢的高山应助南音采纳,获得10
5秒前
彭于晏应助我只吃一碗采纳,获得10
5秒前
zack发布了新的文献求助10
6秒前
科研通AI2S应助刻苦的幼晴采纳,获得10
6秒前
斯文网络完成签到,获得积分10
6秒前
hautzhl完成签到,获得积分10
6秒前
6秒前
7秒前
eason发布了新的文献求助10
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099