Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

微囊藻毒素 Geosmin公司 富营养化 环境科学 水华 水质 丰度(生态学) 蓝藻 支持向量机 微囊藻 生态学 浮游植物 气味 机器学习 生物 计算机科学 营养物 遗传学 神经科学 细菌
作者
Ted D. Harris,Jennifer L. Graham
出处
期刊:Lake and Reservoir Management [U.S. Environmental Protection Agency, Office of Water Regulations and Standards]
卷期号:33 (1): 32-48 被引量:58
标识
DOI:10.1080/10402381.2016.1263694
摘要

Harris TD, Graham JL. 2017. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset. Lake Reserve Manage. 33:32-48.Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Res_M完成签到,获得积分10
刚刚
1秒前
开心牛油果完成签到,获得积分10
1秒前
1秒前
内向水风发布了新的文献求助10
1秒前
Shan完成签到,获得积分10
2秒前
军军问问张完成签到,获得积分20
2秒前
4秒前
4秒前
俏皮代丝发布了新的文献求助10
5秒前
情怀应助zero采纳,获得10
6秒前
现实的行云完成签到,获得积分10
6秒前
李健应助路鹅采纳,获得10
7秒前
GONG发布了新的文献求助10
8秒前
25_1发布了新的文献求助10
8秒前
1234567发布了新的文献求助10
9秒前
10秒前
hou发布了新的文献求助10
10秒前
追逐着幻光完成签到 ,获得积分10
11秒前
金阿林在科研应助蔚蓝色采纳,获得10
12秒前
Jasper应助怕孤独的傲柏采纳,获得10
12秒前
俏皮代丝完成签到,获得积分10
13秒前
14秒前
urkk发布了新的文献求助10
15秒前
小森完成签到,获得积分10
16秒前
orixero应助俏皮代丝采纳,获得10
16秒前
17秒前
小二郎应助Silole采纳,获得10
17秒前
小二郎应助25_1采纳,获得10
17秒前
18秒前
sun完成签到,获得积分10
20秒前
AIA7发布了新的文献求助10
20秒前
熹微完成签到,获得积分10
20秒前
level完成签到 ,获得积分10
21秒前
一只呆果蝇完成签到 ,获得积分10
21秒前
21秒前
lysenko完成签到 ,获得积分10
24秒前
24秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373683
求助须知:如何正确求助?哪些是违规求助? 4499724
关于积分的说明 14007089
捐赠科研通 4406596
什么是DOI,文献DOI怎么找? 2420552
邀请新用户注册赠送积分活动 1413357
关于科研通互助平台的介绍 1389902