Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

微囊藻毒素 Geosmin公司 富营养化 环境科学 水华 水质 丰度(生态学) 蓝藻 支持向量机 微囊藻 生态学 浮游植物 气味 机器学习 生物 计算机科学 营养物 遗传学 神经科学 细菌
作者
Ted D. Harris,Jennifer L. Graham
出处
期刊:Lake and Reservoir Management [Taylor & Francis]
卷期号:33 (1): 32-48 被引量:58
标识
DOI:10.1080/10402381.2016.1263694
摘要

Harris TD, Graham JL. 2017. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset. Lake Reserve Manage. 33:32-48.Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助徐昊雯采纳,获得10
刚刚
wz发布了新的文献求助10
刚刚
dxp完成签到,获得积分10
刚刚
ln发布了新的文献求助10
1秒前
李健应助合适板栗采纳,获得10
1秒前
1秒前
平淡的雁开应助JUAN采纳,获得10
2秒前
2秒前
2秒前
Hello应助魏不不采纳,获得10
3秒前
後知後孓完成签到,获得积分10
4秒前
5秒前
5秒前
周维发布了新的文献求助10
5秒前
6秒前
想毕业完成签到,获得积分10
6秒前
後知後孓发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
狂野谷冬完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
ZexiWu发布了新的文献求助20
9秒前
玖念发布了新的文献求助10
10秒前
想毕业发布了新的文献求助40
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
kingwill应助科研通管家采纳,获得20
10秒前
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
糖异生完成签到,获得积分10
11秒前
传奇3应助科研通管家采纳,获得30
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
lanananan发布了新的文献求助10
11秒前
Wang完成签到,获得积分10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709