Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

微囊藻毒素 Geosmin公司 富营养化 环境科学 水华 水质 丰度(生态学) 蓝藻 支持向量机 微囊藻 生态学 浮游植物 气味 机器学习 生物 计算机科学 营养物 神经科学 细菌 遗传学
作者
Ted D. Harris,Jennifer L. Graham
出处
期刊:Lake and Reservoir Management [U.S. Environmental Protection Agency, Office of Water Regulations and Standards]
卷期号:33 (1): 32-48 被引量:58
标识
DOI:10.1080/10402381.2016.1263694
摘要

Harris TD, Graham JL. 2017. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset. Lake Reserve Manage. 33:32-48.Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮完成签到 ,获得积分10
刚刚
英俊的铭应助悦耳的真采纳,获得10
1秒前
2秒前
上官若男应助刘晓倩采纳,获得10
2秒前
2秒前
3秒前
Chuyu发布了新的文献求助10
3秒前
4秒前
诸葛朝雪完成签到,获得积分10
5秒前
杨航完成签到,获得积分10
6秒前
nater4ver发布了新的文献求助10
7秒前
蓝胖子发布了新的文献求助10
7秒前
怡然发卡发布了新的文献求助10
8秒前
jhhh发布了新的文献求助10
8秒前
杨航发布了新的文献求助10
9秒前
11秒前
Chuyu完成签到,获得积分10
13秒前
可乐发布了新的文献求助10
16秒前
孙伟伟完成签到,获得积分10
16秒前
Tycoon发布了新的文献求助10
19秒前
19秒前
三十三发布了新的文献求助20
20秒前
花生壳完成签到,获得积分20
22秒前
master完成签到,获得积分10
23秒前
asd关闭了asd文献求助
24秒前
活泼之云发布了新的文献求助10
24秒前
25秒前
26秒前
星辰大海应助许大脚采纳,获得10
26秒前
可乐完成签到,获得积分10
28秒前
等等完成签到,获得积分10
28秒前
Ray发布了新的文献求助10
29秒前
唐牛宝完成签到,获得积分10
29秒前
花生壳发布了新的文献求助10
29秒前
淡然子轩完成签到,获得积分10
29秒前
虞美人完成签到 ,获得积分10
29秒前
等等发布了新的文献求助10
30秒前
wawaa完成签到,获得积分10
31秒前
zshjwk18完成签到,获得积分10
36秒前
39秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161864
求助须知:如何正确求助?哪些是违规求助? 2813088
关于积分的说明 7898593
捐赠科研通 2472111
什么是DOI,文献DOI怎么找? 1316332
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129