医学
糖萼
糖胺聚糖
炎症
免疫学
内皮
趋化因子
基质金属蛋白酶
促炎细胞因子
乙酰肝素酶
细胞外基质
内科学
硫酸乙酰肝素
细胞生物学
生物
解剖
作者
Ferdinando Mannello,Daniela Ligi,Joseph D. Raffetto
出处
期刊:PubMed
日期:2014-06-01
卷期号:33 (3): 236-42
被引量:48
摘要
Inflammation represents an important epiphenomenon in the etiopathogenesis of chronic venous disease, a worldwide debilitating condition affecting millions of subjects. The pathophysiology of chronic venous disease (CVD) is based on the hemodynamic abnormalities in conjunction to alterations in cellular and extracellular matrix biocompounds. The endothelial dysfunction results from early perturbation in the endothelium linked to glycocalyx injury and promoted by inflammatory cells and mediators (such as matrix metalloproteinases and interleukins), which lead to progressive dilation of the vein resulting in chronic venous insufficiency. Activated leukocytes during the inflammatory process release enzymes, free radicals, chemokines and inflammatory cytokines in the vessel microenvironment, which are responsible for the changes of the venous wall and venous valve, reflux and venous hypertension, and the development/progression of tissue destruction and skin changes. Sulodexide, a highly purified mixture of glycosaminoglycans composed by 80% fast moving heparin and 20% of dermatan sulphate, exhibits anti-thrombotic and profibrinolytic properties, restoring also the essential endothelial glycocalyx. Glycosaminoglycan sulodexide has been also characterized to reduce the release of inflammatory cytokines/chemokines and to inhibit the matrix metalloproteinases-related proteolytic cascades, counteracting endothelial dysfunctions. The pleiotropic effects of sulodexide set the basis for a very promising agent in treating the spectrum of CVD.
科研通智能强力驱动
Strongly Powered by AbleSci AI