The trees and the forest: Characterization of complex brain networks with minimum spanning trees

计算机科学 生成树 精神分裂症(面向对象编程) 最小生成树 图形 人工智能 脑病 复杂网络 机器学习 神经科学 理论计算机科学 心理学 疾病 数学 算法 医学 组合数学 病理 万维网 程序设计语言
作者
Cornelis J. Stam,Prejaas Tewarie,Edwin van Dellen,E.C.W. van Straaten,Arjan Hillebrand,Piet Van Mieghem
出处
期刊:International Journal of Psychophysiology [Elsevier BV]
卷期号:92 (3): 129-138 被引量:291
标识
DOI:10.1016/j.ijpsycho.2014.04.001
摘要

In recent years there has been a shift in focus from the study of local, mostly task-related activation to the exploration of the organization and functioning of large-scale structural and functional complex brain networks. Progress in the interdisciplinary field of modern network science has introduced many new concepts, analytical tools and models which allow a systematic interpretation of multivariate data obtained from structural and functional MRI, EEG and MEG. However, progress in this field has been hampered by the absence of a simple, unbiased method to represent the essential features of brain networks, and to compare these across different conditions, behavioural states and neuropsychiatric/neurological diseases. One promising solution to this problem is to represent brain networks by a minimum spanning tree (MST), a unique acyclic subgraph that connects all nodes and maximizes a property of interest such as synchronization between brain areas. We explain how the global and local properties of an MST can be characterized. We then review early and more recent applications of the MST to EEG and MEG in epilepsy, development, schizophrenia, brain tumours, multiple sclerosis and Parkinson's disease, and show how MST characterization performs compared to more conventional graph analysis. Finally, we illustrate how MST characterization allows representation of observed brain networks in a space of all possible tree configurations and discuss how this may simplify the construction of simple generative models of normal and abnormal brain network organization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃源theshy发布了新的文献求助10
2秒前
kingwill举报求助违规成功
3秒前
wdy111举报求助违规成功
3秒前
Zel博博举报求助违规成功
3秒前
3秒前
4秒前
乂贰ZERO叁发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
8秒前
9秒前
小二郎应助山城小肘子采纳,获得30
9秒前
Muhammad发布了新的文献求助10
9秒前
10秒前
jundading发布了新的文献求助10
10秒前
桃源theshy完成签到,获得积分10
11秒前
牛姐发布了新的文献求助30
11秒前
ZWE发布了新的文献求助10
11秒前
邵裘完成签到,获得积分10
12秒前
科目三应助Dylan采纳,获得10
12秒前
幸运海星完成签到,获得积分10
12秒前
智智完成签到 ,获得积分10
13秒前
feng发布了新的文献求助10
14秒前
奥特超曼应助千余采纳,获得10
14秒前
14秒前
15秒前
Wcx发布了新的文献求助10
15秒前
X519664508完成签到,获得积分0
15秒前
16秒前
冰红茶完成签到,获得积分10
16秒前
haha发布了新的文献求助10
17秒前
呆呆熊完成签到,获得积分10
18秒前
加油呀完成签到,获得积分10
18秒前
共享精神应助ddddd采纳,获得10
19秒前
19秒前
我是老大应助呆呆熊采纳,获得10
21秒前
21秒前
lc发布了新的文献求助30
21秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176