论证理论
答案集编程
计算机科学
集合(抽象数据类型)
语义学(计算机科学)
程序设计语言
理论计算机科学
逻辑程序设计
人工智能
认识论
哲学
作者
Sarah Alice Gaggl,Norbert Manthey,Alessandro Ronca,Johannes Wallner,Stefan Woltran
出处
期刊:Theory and Practice of Logic Programming
[Cambridge University Press]
日期:2015-07-01
卷期号:15 (4-5): 434-448
被引量:12
标识
DOI:10.1017/s1471068415000149
摘要
Abstract The design of efficient solutions for abstract argumentation problems is a crucial step towards advanced argumentation systems. One of the most prominent approaches in the literature is to use Answer-Set Programming (ASP) for this endeavor. In this paper, we present new encodings for three prominent argumentation semantics using the concept of conditional literals in disjunctions as provided by the ASP-system clingo. Our new encodings are not only more succinct than previous versions, but also outperform them on standard benchmarks.
科研通智能强力驱动
Strongly Powered by AbleSci AI