混淆矩阵
混乱
计算机科学
人工智能
分类器(UML)
度量(数据仓库)
二元分类
机器学习
二进制数
自然语言处理
集合(抽象数据类型)
班级(哲学)
数据挖掘
模式识别(心理学)
数学
支持向量机
算术
精神分析
程序设计语言
心理学
作者
Marina Sokolova,Guy Lapalme
标识
DOI:10.1016/j.ipm.2009.03.002
摘要
This paper presents a systematic analysis of twenty four performance measures used in the complete spectrum of Machine Learning classification tasks, i.e., binary, multi-class, multi-labelled, and hierarchical. For each classification task, the study relates a set of changes in a confusion matrix to specific characteristics of data. Then the analysis concentrates on the type of changes to a confusion matrix that do not change a measure, therefore, preserve a classifier’s evaluation (measure invariance). The result is the measure invariance taxonomy with respect to all relevant label distribution changes in a classification problem. This formal analysis is supported by examples of applications where invariance properties of measures lead to a more reliable evaluation of classifiers. Text classification supplements the discussion with several case studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI