Electrolyte Circulation in Copper Refinery

电解质 阴极 电积 传质 电化学 自然对流 阳极 化学 限制电流 自然循环 电极 溶解 对流 化学工程 材料科学 冶金 热力学 色谱法 物理 物理化学 工程类
作者
Yasuhiro Fukunaka
出处
期刊:Meeting abstracts 卷期号:MA2014-02 (16): 864-864
标识
DOI:10.1149/ma2014-02/16/864
摘要

The importance of natural convection accompanied with electrochemical reactions along vertical electrodes has been recognized in the field of industrial electrochemical engineering as well as electrodeposition. Brenner applied a freezing method to analyze the concentration distribution[1]. Wagner demonstrated that the limiting current density distribution along the vertical cathode was governed by natural convection, based on the boundary layer theory [2, 3]. Wilke, Eisenberg and Tobias described a similarity between the natural convection caused by electrodeposition and by heat transfer [4]. Ibl and Muller examined the ionic mass transfer rate by the interferometry technique [5]. Since then, numerous studies have been carried out on the ionic mass transfer rate associated with natural convection caused by the electrochemical deposition and dissolution of copper in unstirred CuSO 4 -H 2 SO 4 aqueous electrolyte solutions [6-15]. However, most studies have focused on the steady state phenomena along a relatively short electrode at most 15 cm high confined in semi-infinite electrolyte media and have neglected the effects caused by the existence of the counter electrode. In industrial scale of copper refinery, vertical impure casted anode and starting sheet of electrolytic copper cathode are installed in the tank. Significant electrolyte stratification may frequently cause various troubles to induce poor cathode quality. Each refinery designs their own electrolyte circulation system with their confidence. Additive control technique is a key technology. Sometime a slightly different circulation system is introduced even in one refinery in the same company. It is simply because the principle of electrolyte circulation has been never discussed from the fundamental electrochemical engineering point. It may be a starting point for this problem in such a modernized computational technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xz发布了新的文献求助10
刚刚
刚刚
赘婿应助王宏峰采纳,获得10
刚刚
hopen发布了新的文献求助10
1秒前
含糊的冰淇淋完成签到,获得积分10
1秒前
bkagyin应助pupu采纳,获得10
1秒前
1秒前
嗯呢嗯呢应助August采纳,获得200
2秒前
3秒前
脑洞疼应助磕学少女采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
乐乐应助小鱼儿采纳,获得10
6秒前
6秒前
星辰大海应助如沐风采纳,获得10
6秒前
feifei发布了新的文献求助10
6秒前
充电宝应助迅猛2002采纳,获得10
7秒前
SciGPT应助勤劳的音响采纳,获得10
8秒前
秀丽雁芙发布了新的文献求助10
9秒前
hopen完成签到,获得积分10
9秒前
大盆发布了新的文献求助10
10秒前
10秒前
852应助大方小苏采纳,获得10
10秒前
11秒前
无用的老董西完成签到 ,获得积分10
11秒前
香香发布了新的文献求助10
11秒前
神勇中道完成签到,获得积分10
12秒前
大个应助liuying采纳,获得10
12秒前
12秒前
脑洞疼应助TT2022采纳,获得10
13秒前
英俊的铭应助天天采纳,获得10
13秒前
erhao发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
欢喜烧鹅完成签到,获得积分10
15秒前
111完成签到,获得积分10
15秒前
15秒前
16秒前
爆米花应助GOODYUE采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959120
求助须知:如何正确求助?哪些是违规求助? 4219993
关于积分的说明 13139275
捐赠科研通 4003365
什么是DOI,文献DOI怎么找? 2190793
邀请新用户注册赠送积分活动 1205401
关于科研通互助平台的介绍 1116823