吉西他滨
脱氧胞苷激酶
核苷
脱氧胞苷
作用机理
核苷类似物
药理学
医学
DNA聚合酶
抗代谢物
DNA复制
生物化学
DNA
生物
化疗
体外
内科学
作者
William Plunkett,Peng Huang,Yi-Zheng Xu,Volker Heinemann,Ralf Grunewald,Varsha Gandhi
出处
期刊:PubMed
日期:1995-08-01
卷期号:22 (4 Suppl 11): 3-10
被引量:244
摘要
Gemcitabine (dFdC) is a new anticancer nucleoside that is an analog of deoxycytidine. It is a pro-drug and, once transported into the cell, must be phosphorylated by deoxycytidine kinase to an active form. Both gemcitabine diphosphate (dFdCTP) and gemcitabine triphosphate (dFdCTP) inhibit processes required for DNA synthesis. Incorporation of dFdCTP into DNA is most likely the major mechanism by which gemcitabine causes cell death. After incorporation of gemcitabine nucleotide on the end of the elongating DNA strand, one more deoxynucleotide is added and thereafter, the DNA polymerases are unable to proceed. This action ("masked termination") apparently locks the drug into DNA as the proofreading enzymes are unable to remove gemcitabine from this position. Furthermore, the unique actions that gemcitabine metabolites exert on cellular regulatory processes serve to enhance the overall inhibitory activities on cell growth. This interaction is termed "self-potentiation" and is evidenced in very few other anticancer drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI