清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel approach based on fault tree analysis and Bayesian network for multi-state reliability analysis of complex equipment systems

贝叶斯网络 故障树分析 计算机科学 数据挖掘 可靠性(半导体) 复杂系统 条件概率 国家(计算机科学) 可靠性工程 人工智能 算法 工程类 数学 统计 量子力学 物理 功率(物理)
作者
Xiaofang Luo,Yushan Li,Xu Bai,Rongkeng Tang,Hui Jin
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:: 1748006X2311714-1748006X2311714 被引量:1
标识
DOI:10.1177/1748006x231171449
摘要

Due to the complex structure of multi-state complex systems and the lack of data, information, and knowledge, the uncertainty of the logical relationship between the failure states of systems and components and the uncertainty of related failure data become the key issues in the reliability analysis of multi-state complex systems. In this paper, combined with multi-state fault tree (MSFT), a multi-state reliability assessment framework for complex systems considering uncertainty based on multi-source information fusion and multi-state Bayesian network (MSBN) is proposed. The multi-source information fusion method combines historical data and experts’ opinions to solve the uncertainty problem of multi-state failure data in complex equipment systems effectively. Based on the multi-source information fusion method, the calculation method of multi-state prior probability and the construction method of conditional probability are given. By constructing the conditional probability table (CPT), the uncertain logic relationship between the multi-state nodes is effectively expressed, which effectively improves the efficiency of CPT acquisition for MSBN and reduces the workload of experts scoring. Finally, a mud circulating system is taken as an example to prove the proposed method, and the specific calculation process, evaluation results, and some discussions are given. The results show that the proposed method is an effective multi-state reliability analysis method for complex uncertain multi-state systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongt05完成签到 ,获得积分10
23秒前
23秒前
搞怪的白云完成签到 ,获得积分10
31秒前
忧郁静白发布了新的文献求助10
37秒前
thangxtz完成签到,获得积分10
39秒前
9494完成签到,获得积分10
1分钟前
忧郁静白完成签到 ,获得积分20
1分钟前
2分钟前
2分钟前
mzhang2完成签到 ,获得积分10
2分钟前
2分钟前
Emperor完成签到 ,获得积分0
2分钟前
合适的寄灵完成签到 ,获得积分10
3分钟前
朴素的山蝶完成签到 ,获得积分10
3分钟前
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
Drwenlu完成签到,获得积分10
3分钟前
3分钟前
习月阳完成签到,获得积分10
4分钟前
领导范儿应助帮帮我好吗采纳,获得10
4分钟前
4分钟前
baobeikk完成签到,获得积分10
4分钟前
4分钟前
充电宝应助帮帮我好吗采纳,获得10
5分钟前
Migue发布了新的文献求助10
5分钟前
Qiancheni完成签到,获得积分10
5分钟前
Ava应助帮帮我好吗采纳,获得10
5分钟前
6分钟前
6分钟前
wangfaqing942完成签到 ,获得积分10
6分钟前
6分钟前
NexusExplorer应助帮帮我好吗采纳,获得10
7分钟前
7分钟前
FashionBoy应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
7分钟前
8分钟前
8分钟前
8分钟前
9分钟前
vitamin完成签到 ,获得积分10
9分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784270
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999