Antibody‐level Bacteria Grabbing by “Mechanic Invasion” of Bioinspired Hedgehog Artificial Mesoporous Nanostructure for Hierarchical Dynamic Identification and Light‐Response Sterilization

光热治疗 材料科学 纳米技术 细菌 纳米结构 纳米颗粒 生物物理学 生物 遗传学
作者
Sijie Liu,Rui Shu,Huilin Jia,Kexin Wang,Biao Wang,Jiayi Zhang,Jing Zhi Sun,Nosirjon Sattorov,Kamoljon Burkhonovich Makhmudov,Maojun Jin,Jianlong Wang
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202416906
摘要

Abstract The interactions exploration between microorganisms and nanostructures are pivotal steps toward advanced applications, but the antibody‐level bacteria grabbing is limited by the poor understanding of interface identification mechanisms in small‐sized systems. Herein, the de novo design of a bioinspired hedgehog artificial mesoporous nanostructure (core–shell mesoporous Au@Pt (mAPt)) are proposed to investigate the association between the topography design and efficient bacteria grabbing. These observations indicate that virus‐like spiky topography compensates for the obstacles faced by small‐sized materials for bacteria grabbing, including the lack of requisite microscopic cavities and sufficient contact area. Molecular dynamics simulation reveals that spiky topography with heightened mechano‐invasiveness (6.56 × 10 3 KJ mol −1 ) facilitates antibody‐level bacteria grabbing, attributed to the “mechanic invasion”‐induced hierarchical dynamic identification ranging from rough surface contact to penetration fixation. Furthermore, light reflectance and finite element calculation confirmed that mAPt exhibits near‐superblack characteristic and plasmonic hot spot, facilitating enhanced photothermal conversion with power dissipation density at 2.04 × 10 21 W m −3 . After integrating the hierarchical dynamic identification with enhanced light response, mAPt enables advanced applications in immunoassay with 50‐fold sensitivity enhancement and over 99.99% in vitro photothermal sterilization. It is anticipated that this novel biomimetic design provides a deeper understanding of bacteria grabbing and a promising paradigm for bacteria combating.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
醉林发布了新的文献求助10
刚刚
ding应助潘榆采纳,获得10
刚刚
2秒前
赘婿应助bbdan采纳,获得10
2秒前
4秒前
坚强元枫发布了新的文献求助10
4秒前
5秒前
米恩应助22D采纳,获得10
6秒前
Qingyong21完成签到,获得积分10
6秒前
我是老大应助synergia采纳,获得10
7秒前
卿似天上星完成签到,获得积分20
7秒前
8秒前
呆萌安卉发布了新的文献求助10
8秒前
8秒前
9秒前
大小罐子发布了新的文献求助10
9秒前
9秒前
9秒前
11秒前
11秒前
11秒前
12秒前
五香脆脆鲨完成签到,获得积分10
13秒前
13秒前
Lucas应助juntang采纳,获得10
14秒前
丰知然应助菠萝蜜采纳,获得10
14秒前
奋斗的元珊完成签到,获得积分10
14秒前
小王同学发布了新的文献求助10
14秒前
余浪完成签到,获得积分10
15秒前
潘榆发布了新的文献求助10
15秒前
果ghj完成签到,获得积分10
15秒前
宝海青发布了新的文献求助10
16秒前
yuan完成签到,获得积分10
16秒前
叫滚滚发布了新的文献求助20
16秒前
研友_n2QP2L完成签到,获得积分10
17秒前
啊哈哈哈发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469657
求助须知:如何正确求助?哪些是违规求助? 3062868
关于积分的说明 9080250
捐赠科研通 2753067
什么是DOI,文献DOI怎么找? 1510691
科研通“疑难数据库(出版商)”最低求助积分说明 697975
邀请新用户注册赠送积分活动 697938