History-Guided Hill Exploration for Evolutionary Computation

禁忌搜索 数学优化 计算机科学 差异进化 人口 启发式 进化计算 爬山 局部最优 进化算法 局部搜索(优化) 引导式本地搜索 人工智能 数学 社会学 人口学
作者
Junchen Wang,Changhe Li,Sanyou Zeng,Shengxiang Yang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 1962-1975 被引量:2
标识
DOI:10.1109/tevc.2023.3250347
摘要

Although evolutionary computing (EC) methods are stochastic optimization methods, it is usually difficult to find the global optimum by restarting the methods when the population converges to a local optimum. A major reason is that many optimization problems have basins of attraction (BoAs) that differ widely in shape and size, and the population always prefers to converge toward BoAs that are easy to search. Although heuristic restart based on tabu search is a theoretically feasible idea to solve this problem, existing EC methods with heuristic restart are difficult to avoid repetitive search results while maintaining search efficiency. This article tries to overcome the dilemma by online learning the BoAs and proposes a search mode called history-guided hill exploration (HGHE). In the search mode, evaluated solutions are used to help separate the search space into hill regions which correspond to the BoAs, and a classical EC method is used to locate the optimum in each hill region. An instance algorithm for continuous optimization named HGHE differential evolution (HGHE-DE) is proposed to verify the effectiveness of HGHE. Experimental results prove that HGHE-DE can continuously discover unidentified BoAs and locate optima in identified BoAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依依完成签到,获得积分10
1秒前
岁月如歌完成签到 ,获得积分0
1秒前
2秒前
lemon完成签到 ,获得积分10
2秒前
复杂的沛儿完成签到 ,获得积分10
2秒前
啊闻完成签到 ,获得积分10
2秒前
ning_yang完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
木瓜小五哥完成签到,获得积分10
4秒前
4秒前
king完成签到 ,获得积分10
4秒前
4秒前
4秒前
luckyhan完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
巅峰囚冰完成签到,获得积分10
6秒前
Youth完成签到,获得积分10
6秒前
6秒前
曲夜白完成签到 ,获得积分10
7秒前
7秒前
7秒前
PPD发布了新的文献求助10
8秒前
PPD发布了新的文献求助10
8秒前
PPD发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066805
求助须知:如何正确求助?哪些是违规求助? 4288731
关于积分的说明 13360444
捐赠科研通 4108126
什么是DOI,文献DOI怎么找? 2249514
邀请新用户注册赠送积分活动 1254960
关于科研通互助平台的介绍 1187429