亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer learning algorithms for bearing remaining useful life prediction: A comprehensive review from an industrial application perspective

透视图(图形) 方位(导航) 计算机科学 机器学习 钥匙(锁) 人工智能 预测建模 工程类 工业工程 风险分析(工程) 计算机安全 医学
作者
Jiaxian Chen,Ruyi Huang,Zhuyun Chen,Wentao Mao,Weihua Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:193: 110239-110239 被引量:61
标识
DOI:10.1016/j.ymssp.2023.110239
摘要

Accurate remaining useful life (RUL) prediction for rolling bearings encounters many challenges such as complex degradation processes, varying working conditions, and insufficient run-to-failure data. Transfer learning (TL), one paradigm of artificial intelligence technology, has demonstrated its powerful performance and great effectiveness for such challenges. As a result, many TL-based solutions have been widely developed and extensively studied for rolling bearing RUL prediction. Admittedly, several review articles have been published on RUL prediction. Nevertheless, the majority of these articles only concentrated on deep learning-based RUL prediction methods, and a review article that systematically overviews the status of TL-based RUL prediction has not been published. Therefore, it is urgent and significant to thoroughly summarize the academic publications and industrial applications related to TL-based RUL prediction, and present its potential challenges and future research directions. With such goals, the problem definitions of TL-based RUL prediction, the general procedure of RUL prediction, and typical TL-based RUL prediction algorithms are first introduced to help researchers quickly overview the state-of-the-art approaches and recent developments. Thereafter, relevant TL-based RUL prediction solutions are comprehensively discussed from the perspectives of three industrial scenarios, providing suggestions to researchers and engineers for selecting appropriate solutions in practical industrial applications. Finally, the key challenges and future trends in RUL prediction are presented to conclude this paper. We hope that this review of TL-based RUL prediction for rolling bearings can contribute to a better understanding of intelligent prognostic technology and will inspire researchers to extend their work on RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
lixuebin完成签到 ,获得积分10
16秒前
江凡儿发布了新的文献求助10
44秒前
joe完成签到 ,获得积分0
1分钟前
江凡儿完成签到,获得积分10
1分钟前
ct完成签到,获得积分10
1分钟前
bkagyin应助北雨采纳,获得10
1分钟前
1分钟前
ct发布了新的文献求助10
1分钟前
无花果应助ct采纳,获得10
2分钟前
2分钟前
丹晨发布了新的文献求助10
2分钟前
隐形曼青应助丹晨采纳,获得10
2分钟前
招水若离完成签到,获得积分10
2分钟前
2分钟前
cherish发布了新的文献求助10
2分钟前
2分钟前
1257应助cherish采纳,获得10
3分钟前
cherish完成签到,获得积分10
3分钟前
kkk完成签到 ,获得积分10
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
隐形曼青应助zkji采纳,获得10
4分钟前
Jonas完成签到,获得积分10
4分钟前
自信号厂完成签到 ,获得积分10
4分钟前
5分钟前
北雨发布了新的文献求助10
5分钟前
5分钟前
YOKO发布了新的文献求助10
5分钟前
深情安青应助YOKO采纳,获得10
5分钟前
YOKO完成签到,获得积分10
5分钟前
7分钟前
顾矜应助风趣的忆南采纳,获得10
7分钟前
8分钟前
8分钟前
无情的友容完成签到 ,获得积分10
9分钟前
飞快的孱完成签到,获得积分10
9分钟前
9分钟前
zkji发布了新的文献求助10
9分钟前
zkji完成签到,获得积分10
9分钟前
aiid完成签到,获得积分20
9分钟前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158616
求助须知:如何正确求助?哪些是违规求助? 2809798
关于积分的说明 7883671
捐赠科研通 2468521
什么是DOI,文献DOI怎么找? 1314230
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601982