电化学
氢氧化物
酒
化学
酒精氧化
组合化学
有机化学
电极
物理化学
作者
Suiqin Li,Shibin Wang,Yuhang Wang,Jiahui He,Kai Li,James B. Gerken,Shannon S. Stahl,Xing Zhong,Jianguo Wang
标识
DOI:10.1038/s41467-024-55616-w
摘要
Electrochemical alcohol oxidation (EAO) represents an effective method for the production of high-value carbonyl products. However, its industrial viability is hindered by suboptimal efficiency stemming from low reaction rates. Here, we present a synergistic electrocatalysis approach that integrates an active electrode and aminoxyl radical to enhance the performance of EAO. The optimal aminoxyl radical (4-acetamido-2,2,6,6-tetramethylpiperidine 1-oxyl) and Ni0.67V0.33-layered double hydroxide (LDH) are screen as cooperative electrocatalysts by integrating theoretical predictions and experiments. The Ni0.67V0.33-LDH facilitates the adsorption and activation of N-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)acetamide (ACTH) via interactions with ketonic oxygen, thereby improving selectivity and yield at high current densities. The electrolysis process is scaled up to produce 200 g of the steroid carbonyl product 8b (19-Aldoandrostenedione), achieving a yield of 91% and a productivity of 243 g h-1. These results represent a promising method for accelerating electron transfer to enhance alcohol oxidation, highlighting its potential for practical electrosynthesis applications. The industrial viability of alcohol electrooxidation is hindered due to low reaction rates. Here, the authors report a synergistic approach that integrating an active electrode (Ni0.67V0.33-layered double hydroxide) and aminoxyl radical to enhance the oxidation of alcohols at high current densities.
科研通智能强力驱动
Strongly Powered by AbleSci AI