Constraint-Pareto Dominance and Diversity Enhancement Strategy based Evolutionary Algorithm for Solving Constrained Multiobjective Optimization Problems

数学优化 帕累托原理 水准点(测量) 多目标优化 计算机科学 趋同(经济学) 进化算法 最优化问题 进化计算 约束优化 约束(计算机辅助设计) 数学 经济增长 经济 大地测量学 地理 几何学
作者
Zhe Liu,Fei Han,Qing-Hua Ling,Henry Han,Jing Jiang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tevc.2024.3525153
摘要

The utilization of both constrained and unconstrained-based optimization for solving constrained multi-objective optimization problems (CMOPs) has become prevalent among recently proposed constrained multiobjective evolutionary algorithms (CMOEAs). However, the constrained-based optimization which adopted by many CMOEAs typically gives priority to feasible solutions over infeasible ones regardless of their objective values, potentially leading to degraded performance due to the elimination of promising infeasible solutions with strong convergence and diversity. Furthermore, many existing CMOEAs have difficulty in maintaining diversity while focusing on feasibility, thereby hindering their ability to effectively address CMOPs characterized by complex feasible regions. To tackle these challenges, a constraint-Pareto dominance relationship is proposed in this paper to evaluate solutions based on both objectives and feasibility, to improve the optimization potential by reduce the elimination probability of promising infeasible solutions. A diversity enhancement strategy is also designed to enable simultaneously focus on both diversity and feasibility, thus effectively ensuring the diversity of the feasible solutions obtained. Empirical results from benchmark suites and real-world problems demonstrate that our proposed algorithm surpasses state-of-the-art CMOEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞快的珩完成签到,获得积分10
1秒前
PaoPao发布了新的文献求助30
2秒前
2秒前
kevin完成签到,获得积分10
3秒前
greenlu完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
浮游应助朴素的尔蝶采纳,获得10
4秒前
浮游应助朴素的尔蝶采纳,获得10
4秒前
浮游应助朴素的尔蝶采纳,获得10
4秒前
lansing发布了新的文献求助10
5秒前
害羞的冰激凌完成签到,获得积分10
5秒前
对对发布了新的文献求助10
5秒前
594zqz完成签到,获得积分10
6秒前
7秒前
山野发布了新的文献求助20
8秒前
lyh发布了新的文献求助10
9秒前
prettymud发布了新的文献求助10
10秒前
完美世界应助YYY采纳,获得30
10秒前
倦梦还完成签到,获得积分10
12秒前
13秒前
13秒前
赘婿应助刘佳鑫采纳,获得10
14秒前
flawless完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助150
17秒前
大狒狒发布了新的文献求助10
18秒前
shunshun51213完成签到,获得积分10
19秒前
Song发布了新的文献求助10
19秒前
19秒前
21秒前
21秒前
丘比特应助茉莉采纳,获得10
22秒前
单薄飞莲完成签到,获得积分10
25秒前
春风发布了新的文献求助10
25秒前
YYY发布了新的文献求助30
26秒前
Akim应助娃哈哈采纳,获得10
26秒前
28秒前
29秒前
31秒前
JINWEIJIANG完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124206
求助须知:如何正确求助?哪些是违规求助? 4328520
关于积分的说明 13487475
捐赠科研通 4162916
什么是DOI,文献DOI怎么找? 2281925
邀请新用户注册赠送积分活动 1283217
关于科研通互助平台的介绍 1222406