The anterior insula engages in feature- and context-level predictive coding processes for recognition judgments

显著性(神经科学) 心理学 感知 认知心理学 编码(社会科学) 计算机科学 扣带回前部 脑岛 计算模型 人工智能 认知 机器学习 神经科学 统计 数学
作者
Cristiano Costa,Cristina Scarpazza,Nicola Filippini
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:: e0872242024-e0872242024
标识
DOI:10.1523/jneurosci.0872-24.2024
摘要

Predictive coding mechanisms facilitate detection and perceptual recognition, thereby influencing recognition judgements and, broadly, perceptual decision-making. The anterior insula (AI) has been shown to be involved in reaching a decision about discrimination and recognition, as well as to coordinate brain circuits related to reward-based learning. Yet, experimental studies in the context of recognition and decision-making, targeting this area and based on formal trial-by-trial predictive coding computational quantities, are sparse. The present study goes beyond previous investigations and provide a predictive coding computational account of the role of the AI in recognition-related decision-making, by leveraging Zaragoza-Jimenez et al. (2023) open fMRI dataset (17 female, 10 male participants) and computational modelling, characterized by a combination of view-independent familiarity learning and contextual learning. Using model-based fMRI, we show that, in the context a two-option forced-choice identity recognition task, the AI engages in feature-level (i.e., view-independent familiarity) updating and error signaling processes, and context-level familiarity updating to reach a recognition judgment. Our findings highlight that an important functional property of the AI is to update the level of familiarity of a given stimulus, while also adapting to task-relevant, contextual information. Ultimately, these expectations, combined with input visual signals through reciprocally interconnected feedback and feedforward processes, facilitate recognition judgements, thereby guiding perceptual decision making. Significance statement Despite the renowned role of the anterior insula (AI) within the Salience Network and Error-Monitoring Network, studies with a focus on this area and based on formal trial-by-trial predictive coding computational quantities are sparse. The present study provides a formal predictive coding computational account of the AI involvement in recognition-related decision-making. The present results demonstrate that AI activity reflects its engagement in encoding and updating the strength of an agent’s belief in the statistical dependencies within the environment, thereby guiding perceptual decision-making. This underscores the pivotal role of the AI in integrating sensory information and mediating recognition-related decision-making processes. Overall, the findings highlight the AI's function in updating familiarity levels of stimuli and processing contextual information, ultimately facilitating recognition judgments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
4秒前
11发布了新的文献求助10
5秒前
打打应助活泼山雁采纳,获得10
6秒前
7秒前
琮博完成签到,获得积分10
7秒前
TLL完成签到,获得积分10
8秒前
dungaway发布了新的文献求助10
8秒前
zhy发布了新的文献求助10
8秒前
9秒前
happyboy2008发布了新的文献求助10
9秒前
9秒前
找文献完成签到,获得积分20
9秒前
虚幻故事完成签到,获得积分10
10秒前
11秒前
思源应助Penny采纳,获得10
11秒前
Owen应助文龙采纳,获得10
11秒前
Unbelievable完成签到,获得积分10
11秒前
机灵的涔完成签到,获得积分10
11秒前
阳阳阳完成签到 ,获得积分10
12秒前
13秒前
找文献发布了新的文献求助10
13秒前
14秒前
虚幻故事发布了新的文献求助10
14秒前
spring发布了新的文献求助10
14秒前
lalalala发布了新的文献求助10
14秒前
眼睛大的傲菡完成签到,获得积分10
14秒前
小董不懂发布了新的文献求助10
16秒前
16秒前
巴甫洛夫的小狗完成签到,获得积分10
18秒前
18秒前
汉堡包应助达达采纳,获得10
19秒前
直率的初露完成签到,获得积分10
19秒前
21秒前
NexusExplorer应助小董不懂采纳,获得10
21秒前
微眸应助VDC采纳,获得10
21秒前
七号在野闪闪完成签到,获得积分10
21秒前
纪飞松发布了新的文献求助10
22秒前
MoMo完成签到,获得积分10
22秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222562
求助须知:如何正确求助?哪些是违规求助? 2871242
关于积分的说明 8174624
捐赠科研通 2538263
什么是DOI,文献DOI怎么找? 1370390
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619580