Estimation Of Leaf Area Index Using Radiative Transfer Process-guided Deep Learning

索引(排版) 过程(计算) 辐射传输 计算机科学 估计 遥感 叶面积指数 人工智能 环境科学 地质学 工程类 光学 物理 生态学 系统工程 万维网 生物 操作系统
作者
Zhouyang Liu,R. An,Yuting Qiao,Xiao Ma,Li Gao,Huaan Jin
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/lgrs.2025.3528181
摘要

The leaf area index (LAI) serves as a significant vegetation growth indicator and plays an essential role in vegetation's feedback to climate change. Currently, artificial intelligence (e.g., deep learning) algorithms possess strong capabilities in constructing complex relationships and demonstrate successful integration with remote sensing for LAI inversion. Among these algorithms, the long short-term memory (LSTM) network excels in handling sequence data and features a multi-layer nonlinear structure that effectively captures complex nonlinear relationships between vegetation canopy reflectance and LAI. However, previous researches mainly relied on the strong learning capabilities of LSTM without incorporating essential remote sensing knowledge, which led to the lack of process information guidance in the training stage. Consequently, the performance of the trained model may be significantly limited. In this letter, we proposed a process-guided LSTM (LSTM-PG) deep learning method for LAI estimation by integrating radiative transfer models. The constrained training dataset was generated using the Soil-Leaf-Canopy (SLC) model. We separately utilized the loss function of mean squared error (MSE) and a process-guided loss function to generate LSTM models for LAI predictions from the simulated SLC datasets. Subsequently, we validated the accuracy of the LAI retrieval models using field measurements from the ImagineS project. Our results indicated that the proposed process-guided (PG) method (R² = 0.79, RMSE = 0.87) performed better than the LSTM-MSE estimations (R² = 0.79, RMSE = 0.93). Additionally, statistical analyses across various scenarios demonstrated significant advantages of the proposed method, and the LSTM-PG predictions showed good spatial consistency with the LAI reference maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助111采纳,获得10
刚刚
1秒前
科研通AI5应助ZHH采纳,获得10
1秒前
1秒前
李爱国应助飞飞采纳,获得10
2秒前
2秒前
COCCUS完成签到,获得积分10
2秒前
yx阿聪发布了新的文献求助10
3秒前
3秒前
史小霜发布了新的文献求助10
3秒前
研友_VZG7GZ应助懵懂的小夏采纳,获得10
3秒前
小肥羊发布了新的文献求助10
4秒前
4秒前
苏格发布了新的文献求助10
5秒前
lili发布了新的文献求助10
5秒前
5秒前
5秒前
机灵柚子应助1234采纳,获得20
6秒前
jl发布了新的文献求助10
6秒前
打打应助es采纳,获得10
6秒前
luyuhao3完成签到,获得积分10
7秒前
COCCUS发布了新的文献求助10
7秒前
星星完成签到,获得积分20
9秒前
10秒前
ding应助高兴的悟空采纳,获得10
10秒前
orixero应助jl采纳,获得10
10秒前
10秒前
雅典的宠儿完成签到 ,获得积分10
10秒前
111发布了新的文献求助10
10秒前
CipherSage应助云帆采纳,获得10
11秒前
852应助苽峰采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得30
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
小松鼠完成签到,获得积分10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745432
求助须知:如何正确求助?哪些是违规求助? 3288432
关于积分的说明 10058686
捐赠科研通 3004633
什么是DOI,文献DOI怎么找? 1649715
邀请新用户注册赠送积分活动 785503
科研通“疑难数据库(出版商)”最低求助积分说明 751117