Physics-informed neural networks for enhancing medical flow magnetic resonance imaging: Artifact correction and mean pressure and Reynolds stresses assimilation

物理 雷诺数 磁共振成像 工件(错误) 核磁共振 同化(音韵学) 机械 统计物理学 医学 湍流 放射科 人工智能 语言学 哲学 计算机科学
作者
Alexandre Villié,Sebastian Schmitter,Jakob G. R. von Saldern,Simon Demange,Kilian Oberleithner
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (2)
标识
DOI:10.1063/5.0252852
摘要

In this study, we use physics-informed neural networks (PINNs) to assimilate the turbulent mean flow fields from Cartesian time-resolved three-dimensional phase-contrast magnetic resonance imaging [known as four-dimensional (4D) flow MRI] measurements in an in vitro axis-symmetric stenosis. 4D flow has emerged as a prominent tool for the hemodynamic assessment of cardiovascular pathologies such as aortic stenosis. However, the standard, Cartesian-based 4D flow acquisitions suffer from displacement artifacts and limited spatiotemporal resolution, which bias the quantification of the velocity field. The goal of this study is to enhance noisy 4D flow measurements by correcting the displacement artifact and assimilating the mean pressure and Reynolds stresses. We consider a transitional stenotic flow that exhibits flow separation. In the first step, a PINN is trained on noisy phase-contrast MRI time-averaged velocity data and informed by the continuity equation. The validation against synchronized single-point imaging (Sync SPI) MRI experimental data reveals a substantial reduction of the displacement artifact and effective denoising. This PINN-corrected mean velocity field is used to assimilate the mean pressure and Reynolds stresses by training a PINN based on the Reynolds-averaged Navier–Stokes (RANS) equations closed with the Spalart–Allmaras turbulence model. The mean pressure and Reynolds stress assimilations are validated using a numerical RANS dataset and then applied to experimental 4D flow data. Our results demonstrate that PINNs are effective for post-processing 4D flow measurements. They enable displacement error correction, data denoising, and identifying unknown quantities. Such post-processing can bridge the quality gap between short acquisition-time standard 4D flow and Sync SPI measurements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
慢慢完成签到,获得积分10
2秒前
HHD发布了新的文献求助10
2秒前
江小白发布了新的文献求助10
2秒前
lee完成签到 ,获得积分10
2秒前
研友_VZG7GZ应助樱桃采纳,获得10
3秒前
李健鹏发布了新的文献求助100
3秒前
3秒前
3秒前
4秒前
Ion发布了新的文献求助10
4秒前
NMZN发布了新的文献求助10
5秒前
5秒前
方墨发布了新的文献求助30
6秒前
6秒前
彭于晏发布了新的文献求助20
7秒前
长心完成签到,获得积分10
7秒前
CipherSage应助小杨爱科研采纳,获得10
7秒前
chao完成签到,获得积分10
8秒前
8秒前
优美匕发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助史莱莱莱姆采纳,获得10
9秒前
小马发布了新的文献求助10
9秒前
zzzq发布了新的文献求助10
10秒前
打打应助红叶采纳,获得10
11秒前
11秒前
LDDD发布了新的文献求助10
11秒前
市井小民发布了新的文献求助10
12秒前
大模型应助xiaobei采纳,获得10
13秒前
14秒前
yyyy完成签到,获得积分10
14秒前
RC_Wang应助随风采纳,获得10
14秒前
852应助穆清采纳,获得10
15秒前
15秒前
15秒前
NMZN完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3513433
求助须知:如何正确求助?哪些是违规求助? 3095846
关于积分的说明 9229335
捐赠科研通 2790920
什么是DOI,文献DOI怎么找? 1531458
邀请新用户注册赠送积分活动 711510
科研通“疑难数据库(出版商)”最低求助积分说明 706841