🔥 科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。详情 📚 中科院2025期刊分区📊 已更新

Nutritional influences on Alzheimer’s disease: Insights from transformer models and explainable AI

神经科学 疾病 心理学 医学 生物 内科学
作者
Ziming Liu,Longjian Liu,R. Eric Heidel,Xiaopeng Zhao
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:20 (S7)
标识
DOI:10.1002/alz.089077
摘要

Abstract Background This study utilizes transformer‐based machine learning models and explainable AI (XAI) techniques to investigate the complex relationship between various nutritional factors and AD mortality. Drawing data from the Third National Health and Nutrition Examination Survey (NHANES III 1988 to 1994) and the NHANES III Mortality‐Linked File (2019), it aims to dissect the multifaceted interactions between nutrition and AD. Method The study employs advanced transformer models alongside traditional machine learning methods like random forests and support vector machines. These models are applied to the NHANES III dataset to predict mortality outcomes in AD, HD, and CA, with a particular focus on nutritional factors. XAI techniques, including the Shapley Additive Explanations (SHAP) and integrated gradients, are used to enhance the interpretability of these models. The aim is to identify and understand the most influential nutritional elements contributing to AD mortality and how these compare across different disease contexts. Result Transformer models demonstrated a high degree of accuracy and reliability in identifying AD cases, outperforming traditional models in recall scores. XAI analysis highlighted several key nutritional factors significantly associated with AD mortality, such as serum apolipoprotein AI, vitamin B12, and selenium levels. These findings underscore the potential of transformer models and XAI in extracting deeper insights from complex medical data. Additionally, the study revealed distinct nutritional patterns associated with AD compared to HD and CA, suggesting specific nutritional pathways influencing the progression and mortality of these diseases. Conclusion This research represents a significant step forward in applying advanced AI methodologies to medical research, particularly in the context of AD. By leveraging transformer models and XAI, the study provides a nuanced understanding of the impact of nutrition on AD mortality. It highlights the potential of these techniques in unraveling the complex interplay between diet and disease progression, offering a foundation for future investigations into targeted nutritional interventions for AD management. The findings also suggest broader implications for the use of AI in healthcare, paving the way for more sophisticated and personalized approaches to disease prevention and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助称心曼安采纳,获得10
1秒前
vielate完成签到,获得积分10
1秒前
陈秋发布了新的文献求助10
2秒前
Sunrise完成签到 ,获得积分10
2秒前
爆米花应助高大诗筠采纳,获得10
2秒前
文艺醉波发布了新的文献求助10
3秒前
3秒前
朴素冰双发布了新的文献求助10
4秒前
5秒前
时尚的秋天完成签到 ,获得积分10
5秒前
5秒前
蒙蒙发布了新的文献求助10
8秒前
文献狗发布了新的文献求助10
9秒前
10秒前
流夏完成签到 ,获得积分10
11秒前
郮东完成签到 ,获得积分10
11秒前
保柚完成签到 ,获得积分10
12秒前
nanhe698发布了新的文献求助10
12秒前
漂亮火龙果完成签到 ,获得积分10
13秒前
peiter完成签到 ,获得积分10
13秒前
14秒前
aa完成签到,获得积分20
14秒前
阿铭完成签到 ,获得积分10
15秒前
Ava应助文献狗采纳,获得10
15秒前
蒙蒙完成签到,获得积分20
16秒前
STAR应助千羽采纳,获得10
18秒前
18秒前
19秒前
aa发布了新的文献求助10
19秒前
上官若男应助胡帅采纳,获得10
19秒前
20秒前
文人青完成签到 ,获得积分10
20秒前
Erislastem完成签到,获得积分10
21秒前
22秒前
微笑驳发布了新的文献求助10
23秒前
现代完成签到,获得积分10
23秒前
迟大猫应助MXene采纳,获得10
24秒前
妮0001发布了新的文献求助10
24秒前
邱邱完成签到 ,获得积分10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Conference Record, IAS Annual Meeting 1977 1150
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
British Girl Chinese Wife (New World Press, 1985) 800
中国文摘CHINA DIGEST(1946-1950) 1-3(英文) 精装 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3606099
求助须知:如何正确求助?哪些是违规求助? 3173914
关于积分的说明 9580618
捐赠科研通 2879818
什么是DOI,文献DOI怎么找? 1581970
邀请新用户注册赠送积分活动 743824
科研通“疑难数据库(出版商)”最低求助积分说明 726285