Deep Adaptively Dynamic Edge Graph Convolution Network with Attention Weight and High-dimension Affinity Feature Graph for Rotating Machinery Fault Diagnosis

计算机科学 邻接表 人工智能 图形 模式识别(心理学) 邻接矩阵 算法 理论计算机科学
作者
Zhichao Jiang,Dongdong Liu,Lingli Cui
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9e1d
摘要

Abstract Graph neural network (GNN) has emerged as an effective way to mine relationship between data due to its powerful modeling capability for structure data, and have garnered significant attention from scholars for intelligent fault diagnosis tasks. However, the adjacency matrix of mostly GNN models with deep architecture are always fixed during aggregation process, and the edge connection relationship cannot be adaptively adjusted, which limits their performance for feature representation. Besides, for few-shot diagnosis scenarios of rotating machinery, the generalization performance of deep GNN models will be further degraded due to fixed receptive fields and limited training samples. To address these issues, a deep adaptively dynamic edge graph convolution network (DADE-GCN) with attention weight and high-dimension affinity feature graph is proposed. First, a deep adaptively dynamic edge graph convolution module with attention weight is developed to dynamically adjust the receptive field in different graph convolution layers by adaptively changing the nearest neighbors and edge connection relationship to construct new adjacency matric. Subsequently, the output features of different layers are fused by self-attention mechanism. Second, to overcome the effect of time-shift problem existing in vibration signals and capture accurate interdependencies between data under few-shot diagnosis tasks, a high-dimension affinity feature graph construction method is proposed to construct graph structure data. The effectiveness of proposed method is quantitatively verified by two rotating machinery datasets, indicating that the proposed DADE-GCN model can achieve the average diagnosis accuracies of 99.83% and 98.80% in the few-shot diagnosis tasks, which is significantly superior than several state-of-the-art recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
多多完成签到,获得积分20
1秒前
科研通AI2S应助杨哈哈采纳,获得10
2秒前
传奇3应助ExtroGod采纳,获得10
3秒前
多多发布了新的文献求助10
4秒前
5秒前
讨厌鬼发布了新的文献求助10
5秒前
相信未来完成签到,获得积分0
6秒前
认真的曲奇完成签到,获得积分10
7秒前
小王完成签到,获得积分10
7秒前
瘦瘦雅香应助科研通管家采纳,获得30
8秒前
Shinyu应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
DD给DD的求助进行了留言
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
xiang完成签到 ,获得积分10
10秒前
10秒前
fly完成签到,获得积分10
11秒前
NexusExplorer应助LM采纳,获得10
13秒前
14秒前
14秒前
yulian完成签到,获得积分10
14秒前
Xulun发布了新的文献求助10
14秒前
Zxx完成签到,获得积分10
15秒前
15秒前
在水一方应助dangdanghong采纳,获得10
16秒前
Spencer完成签到 ,获得积分10
16秒前
16秒前
哭泣的幼蓉完成签到 ,获得积分10
16秒前
鲨鱼123完成签到,获得积分10
18秒前
19秒前
19秒前
CipherSage应助粗心的无颜采纳,获得10
19秒前
19秒前
星辰大海应助权千万采纳,获得10
19秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221211
求助须知:如何正确求助?哪些是违规求助? 2869857
关于积分的说明 8167963
捐赠科研通 2536680
什么是DOI,文献DOI怎么找? 1368983
科研通“疑难数据库(出版商)”最低求助积分说明 645303
邀请新用户注册赠送积分活动 619002