Deep Adaptively Dynamic Edge Graph Convolution Network with Attention Weight and High-dimension Affinity Feature Graph for Rotating Machinery Fault Diagnosis

计算机科学 邻接表 人工智能 图形 模式识别(心理学) 邻接矩阵 算法 理论计算机科学
作者
Zhichao Jiang,Dongdong Liu,Lingli Cui
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6501/ad9e1d
摘要

Abstract Graph neural network (GNN) has emerged as an effective way to mine relationship between data due to its powerful modeling capability for structure data, and have garnered significant attention from scholars for intelligent fault diagnosis tasks. However, the adjacency matrix of mostly GNN models with deep architecture are always fixed during aggregation process, and the edge connection relationship cannot be adaptively adjusted, which limits their performance for feature representation. Besides, for few-shot diagnosis scenarios of rotating machinery, the generalization performance of deep GNN models will be further degraded due to fixed receptive fields and limited training samples. To address these issues, a deep adaptively dynamic edge graph convolution network (DADE-GCN) with attention weight and high-dimension affinity feature graph is proposed. First, a deep adaptively dynamic edge graph convolution module with attention weight is developed to dynamically adjust the receptive field in different graph convolution layers by adaptively changing the nearest neighbors and edge connection relationship to construct new adjacency matric. Subsequently, the output features of different layers are fused by self-attention mechanism. Second, to overcome the effect of time-shift problem existing in vibration signals and capture accurate interdependencies between data under few-shot diagnosis tasks, a high-dimension affinity feature graph construction method is proposed to construct graph structure data. The effectiveness of proposed method is quantitatively verified by two rotating machinery datasets, indicating that the proposed DADE-GCN model can achieve the average diagnosis accuracies of 99.83% and 98.80% in the few-shot diagnosis tasks, which is significantly superior than several state-of-the-art recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助忧虑的访梦采纳,获得10
刚刚
lili发布了新的文献求助10
刚刚
JPH1990应助小岚花采纳,获得10
1秒前
上官若男应助西梅采纳,获得10
1秒前
科研通AI6应助雨碎寒江采纳,获得10
2秒前
2秒前
陌然浅笑发布了新的文献求助10
3秒前
核桃发布了新的文献求助10
3秒前
4秒前
勤qin发布了新的文献求助10
5秒前
WY完成签到,获得积分10
6秒前
wanci应助爱学习的YY采纳,获得10
6秒前
舒心明杰完成签到,获得积分10
6秒前
赘婿应助xh采纳,获得10
6秒前
王麒发布了新的文献求助10
7秒前
isonomia完成签到,获得积分10
7秒前
Livrik发布了新的文献求助10
7秒前
小刘同学发布了新的文献求助10
8秒前
小蘑菇应助曼凡采纳,获得10
8秒前
繁弱发布了新的文献求助10
9秒前
如果完成签到,获得积分10
9秒前
YYYY完成签到,获得积分10
9秒前
123茄子完成签到 ,获得积分10
9秒前
Jeanne完成签到,获得积分10
10秒前
开整吧完成签到,获得积分10
10秒前
整点儿薯条完成签到,获得积分10
10秒前
lll完成签到,获得积分10
11秒前
11秒前
田様应助LIUYI采纳,获得10
11秒前
12秒前
12秒前
xh完成签到,获得积分10
13秒前
曼凡应助文件撤销了驳回
15秒前
樱岛麻衣完成签到,获得积分10
15秒前
Ava应助lili采纳,获得10
16秒前
dream完成签到 ,获得积分10
16秒前
16秒前
16秒前
ANLYep完成签到,获得积分10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227238
求助须知:如何正确求助?哪些是违规求助? 4398359
关于积分的说明 13689318
捐赠科研通 4263055
什么是DOI,文献DOI怎么找? 2339509
邀请新用户注册赠送积分活动 1336803
关于科研通互助平台的介绍 1292920