Deep Adaptively Dynamic Edge Graph Convolution Network with Attention Weight and High-dimension Affinity Feature Graph for Rotating Machinery Fault Diagnosis

计算机科学 邻接表 人工智能 图形 模式识别(心理学) 邻接矩阵 算法 理论计算机科学
作者
Zhichao Jiang,Dongdong Liu,Lingli Cui
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6501/ad9e1d
摘要

Abstract Graph neural network (GNN) has emerged as an effective way to mine relationship between data due to its powerful modeling capability for structure data, and have garnered significant attention from scholars for intelligent fault diagnosis tasks. However, the adjacency matrix of mostly GNN models with deep architecture are always fixed during aggregation process, and the edge connection relationship cannot be adaptively adjusted, which limits their performance for feature representation. Besides, for few-shot diagnosis scenarios of rotating machinery, the generalization performance of deep GNN models will be further degraded due to fixed receptive fields and limited training samples. To address these issues, a deep adaptively dynamic edge graph convolution network (DADE-GCN) with attention weight and high-dimension affinity feature graph is proposed. First, a deep adaptively dynamic edge graph convolution module with attention weight is developed to dynamically adjust the receptive field in different graph convolution layers by adaptively changing the nearest neighbors and edge connection relationship to construct new adjacency matric. Subsequently, the output features of different layers are fused by self-attention mechanism. Second, to overcome the effect of time-shift problem existing in vibration signals and capture accurate interdependencies between data under few-shot diagnosis tasks, a high-dimension affinity feature graph construction method is proposed to construct graph structure data. The effectiveness of proposed method is quantitatively verified by two rotating machinery datasets, indicating that the proposed DADE-GCN model can achieve the average diagnosis accuracies of 99.83% and 98.80% in the few-shot diagnosis tasks, which is significantly superior than several state-of-the-art recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daqing1725完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
Werner完成签到 ,获得积分10
7秒前
热心的十二完成签到 ,获得积分10
8秒前
马婷婷完成签到,获得积分10
11秒前
包容的忆灵完成签到 ,获得积分10
11秒前
黑白完成签到 ,获得积分10
13秒前
薛微有点甜完成签到 ,获得积分10
14秒前
zhang完成签到 ,获得积分10
14秒前
15秒前
盼盼完成签到,获得积分10
16秒前
美好颜发布了新的文献求助10
17秒前
wendy完成签到,获得积分10
23秒前
依人如梦完成签到 ,获得积分10
23秒前
闲人不贤完成签到,获得积分10
23秒前
温馨完成签到 ,获得积分10
24秒前
乐正怡完成签到 ,获得积分0
25秒前
景景好完成签到,获得积分10
26秒前
34秒前
36秒前
logolush完成签到 ,获得积分10
36秒前
三百一十四完成签到 ,获得积分10
39秒前
谢序泽发布了新的文献求助10
40秒前
英吉利25发布了新的文献求助10
41秒前
翱翔者完成签到 ,获得积分10
42秒前
张小馨完成签到 ,获得积分10
42秒前
43秒前
量子星尘发布了新的文献求助10
44秒前
沉默洋葱完成签到,获得积分10
44秒前
香蕉觅云应助daqing1725采纳,获得10
45秒前
48秒前
啥时候吃火锅完成签到 ,获得积分0
48秒前
路路发布了新的文献求助10
49秒前
藜藜藜在乎你完成签到 ,获得积分10
50秒前
阿宝完成签到,获得积分10
50秒前
大胆的忆寒完成签到 ,获得积分10
52秒前
Chamsel完成签到,获得积分10
53秒前
55秒前
感性的俊驰完成签到 ,获得积分10
59秒前
lisa完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957123
求助须知:如何正确求助?哪些是违规求助? 3503185
关于积分的说明 11111449
捐赠科研通 3234227
什么是DOI,文献DOI怎么找? 1787829
邀请新用户注册赠送积分活动 870783
科研通“疑难数据库(出版商)”最低求助积分说明 802318