🔥 科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。详情 📚 中科院2025期刊分区📊 已更新

An integrated framework for aspect category-based sentiment analysis using adaptive feature selection and category-aware decision fusion strategies

计算机科学 选择(遗传算法) 特征选择 特征(语言学) 情绪分析 人工智能 融合 自然语言处理 机器学习 语言学 哲学
作者
Qingqing Li,Ziming Zeng,Shouqiang Sun,Tingting Li
出处
期刊:The Electronic Library [Emerald (MCB UP)]
标识
DOI:10.1108/el-09-2024-0270
摘要

Purpose Aspect category-based sentiment analysis (ACSA) has been widely used in consumer preference mining and marketing strategy formulation. However, existing studies ignore the variability in features and the intrinsic correlation among diverse aspect categories in ACSA tasks. To address these problems, this paper aims to propose a novel integrated framework. Design/methodology/approach The integrated framework consists of three modules: text feature extraction and fusion, adaptive feature selection and category-aware decision fusion. First, text features from global and local views are extracted and fused to comprehensively capture the potential information in the different dimensions of the review text. Then, an adaptive feature selection strategy is devised for each aspect category to determine the optimal feature set. Finally, considering the intrinsic associations between aspect categories, a category-aware decision fusion strategy is constructed to enhance the performance of ACSA tasks. Findings Comparative experimental results demonstrate that the integrated framework can effectively detect aspect categories and their corresponding sentiment polarities from review texts, achieving a macroaveraged F1 score (Fmacro) of 72.38% and a weighted F1 score (F1) of 79.39%, with absolute gains of 2.93% to 27.36% and 4.35% to 20.36%, respectively, compared to the baselines. Originality/value This framework can simultaneously detect aspect categories and corresponding sentiment polarities from review texts, thereby assisting e-commerce enterprises in gaining insights into consumer preferences, prioritizing product improvements, and adjusting marketing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DeepLearning完成签到,获得积分10
刚刚
1秒前
zdw完成签到,获得积分10
1秒前
2秒前
2秒前
踏雪飞鸿发布了新的文献求助10
2秒前
烟花应助vicky采纳,获得10
3秒前
淡定路人发布了新的文献求助10
5秒前
Steven发布了新的文献求助10
6秒前
5U发布了新的文献求助10
7秒前
池鱼完成签到,获得积分10
8秒前
嗣音发布了新的文献求助10
9秒前
9秒前
10秒前
殷超发布了新的文献求助10
10秒前
lyy完成签到,获得积分10
10秒前
10秒前
痴情的东蒽完成签到,获得积分20
11秒前
lbjkzj完成签到,获得积分10
13秒前
窗外飞仙完成签到,获得积分10
13秒前
Micheal完成签到,获得积分10
13秒前
无悔呀发布了新的文献求助10
13秒前
14秒前
15秒前
科研通AI5应助zxb采纳,获得10
15秒前
东d发布了新的文献求助10
16秒前
sos完成签到,获得积分10
16秒前
17秒前
殷超完成签到,获得积分0
18秒前
北风完成签到,获得积分10
19秒前
5U完成签到,获得积分10
21秒前
22秒前
susu_完成签到,获得积分10
22秒前
kento发布了新的文献求助10
22秒前
lbjkzj发布了新的文献求助30
22秒前
22秒前
22秒前
zz完成签到,获得积分10
23秒前
早起困困发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3604549
求助须知:如何正确求助?哪些是违规求助? 3172657
关于积分的说明 9575401
捐赠科研通 2878730
什么是DOI,文献DOI怎么找? 1581144
邀请新用户注册赠送积分活动 743437
科研通“疑难数据库(出版商)”最低求助积分说明 725932