A Machine Learning–Based Prediction Model for the Probability of Fall Risk Among Chinese Community-Dwelling Older Adults

逻辑回归 机器学习 随机森林 朴素贝叶斯分类器 医学 人工智能 贝叶斯定理 预测建模 计算机科学 支持向量机 贝叶斯概率
作者
Zhou Zhou,Danhui Wang,Jun Sun,Min Zhu,Liping Teng
出处
期刊:Cin-computers Informatics Nursing
标识
DOI:10.1097/cin.0000000000001202
摘要

Fall is a common adverse event among older adults. This study aimed to identify essential fall factors and develop a machine learning–based prediction model to predict the fall risk category among community-dwelling older adults, leading to earlier intervention and better outcomes. Three prediction models (logistic regression, random forest, and naive Bayes) were constructed and evaluated. A total of 459 people were involved, including 156 participants (34.0%) with high fall risk. Seven independent predictors (frail status, age, smoking, heart attack, cerebrovascular disease, arthritis, and osteoporosis) were selected to develop the models. Among the three machine learning models, the logistic regression model had the best model fit, with the highest area under the curve (0.856) and accuracy (0.797) and sensitivity (0.735) in the test set. The logistic regression model had excellent discrimination, calibration, and clinical decision-making ability, which could aid in accurately identifying the high-risk groups and taking early intervention with the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸葛语琴完成签到,获得积分10
1秒前
万能图书馆应助早发论文采纳,获得10
2秒前
小梦完成签到,获得积分10
3秒前
9秒前
jj发布了新的文献求助10
12秒前
guandada完成签到,获得积分10
13秒前
14秒前
爆米花应助虚幻的电灯胆采纳,获得10
16秒前
16秒前
16秒前
guandada发布了新的文献求助30
18秒前
20秒前
tanzhouliang发布了新的文献求助10
21秒前
祁代芙发布了新的文献求助20
21秒前
完美世界应助jj采纳,获得30
23秒前
传奇3应助tanzhouliang采纳,获得10
29秒前
31秒前
李健应助科研通管家采纳,获得10
32秒前
32秒前
打打应助科研通管家采纳,获得10
32秒前
薰硝壤应助科研通管家采纳,获得30
32秒前
32秒前
Mutsu应助科研通管家采纳,获得20
32秒前
科研通AI2S应助科研通管家采纳,获得30
32秒前
Jasper应助科研通管家采纳,获得10
32秒前
32秒前
sine_mora发布了新的文献求助10
34秒前
悦耳非笑发布了新的文献求助30
35秒前
FXe完成签到,获得积分10
42秒前
我是老大应助KoitoYuu采纳,获得10
43秒前
pcr163应助杨茉采纳,获得60
46秒前
49秒前
sine_mora完成签到,获得积分10
50秒前
51秒前
Hello应助fly the bike采纳,获得30
52秒前
52秒前
吞吞完成签到,获得积分10
53秒前
54秒前
一起看海发布了新的文献求助10
56秒前
57秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084205
求助须知:如何正确求助?哪些是违规求助? 2737236
关于积分的说明 7544249
捐赠科研通 2386802
什么是DOI,文献DOI怎么找? 1265552
科研通“疑难数据库(出版商)”最低求助积分说明 613127
版权声明 598187