Synergistic Modulation of π–π* and n–π* Transitions by In Situ Phenol‐Like Structure Integration for Efficiently Wide‐Spectrum Hydrogen Production of Ultrathin Carbon Nitride

纳米片 光催化 材料科学 氮化碳 光化学 制氢 纳米技术 氮化物 化学工程 带隙 催化作用 光电子学 化学 有机化学 工程类 图层(电子)
作者
Jinqiao Li,Lizheng Chen,Xuefeng Chu,Kaikai Ba,Tengfeng Xie,Wenfu Yan,Gang Liu
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202405013
摘要

Abstract 2D carbon nitride nanosheets, exemplified by g‐C 3 N 4 , offers significant structural benefits and enhanced photocatalytic activity. Nonetheless, the quantum confinement effect prevalent in nanoscale photocatalysts would result in an enlarged bandgap, potentially restricting the spectral absorption range and impeding improvements in photocatalytic efficiency. Here, a high‐performance 2D photocatalyst with an extended spectral response is achieved by incorporating a novel phenol‐like structure into the conjugated framework of ultrathin g‐C 3 N 4 nanosheet. This novel strategy features targeted pyrimidine doping to create a conjugated carbon zone in heptazine structure, offering a thermodynamically favorable pathway for hydroxyl functionalization during the annealing exfoliation process. Consequently, the π–π* transition energy in the material is significantly decreased, and the active lone pair electrons in phenol‐like structure induces a new n–π* transition with notably enhanced absorption from 500 to 650 nm. The optimized material shows a dramatic enhancement in photocatalytic activity, achieving ≈72 times than the activity of bulk g‐C 3 N 4 , and demonstrating a measurable H 2 production rate of 6.57 µmol g −1 h −1 under 650 nm light. This study represents a significant step forward in the strategic design of 2D photocatalysts, with tailored electronic structures that significantly boost light absorption and photocatalytic efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
my完成签到 ,获得积分10
1秒前
duxinyue完成签到,获得积分10
1秒前
1秒前
2秒前
科研通AI5应助斯文芷荷采纳,获得10
2秒前
3秒前
2鱼发布了新的文献求助10
4秒前
SYLH应助畅快的谷梦采纳,获得10
5秒前
mingjie发布了新的文献求助10
5秒前
Akim应助克里斯就是逊啦采纳,获得10
5秒前
越幸运完成签到 ,获得积分10
6秒前
young完成签到 ,获得积分10
6秒前
天天快乐应助成就的烧鹅采纳,获得10
7秒前
cora发布了新的文献求助10
7秒前
诚心的不斜完成签到,获得积分10
8秒前
bono完成签到 ,获得积分10
8秒前
8秒前
9秒前
又要起名字关注了科研通微信公众号
10秒前
可爱的函函应助su采纳,获得10
10秒前
11秒前
澳澳完成签到,获得积分10
12秒前
12秒前
善学以致用应助纯真抽屉采纳,获得10
13秒前
13秒前
笑笑发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
16秒前
Hello应助cora采纳,获得10
16秒前
汉唐精彩完成签到,获得积分10
17秒前
17秒前
18秒前
田茂青完成签到,获得积分10
18秒前
damian发布了新的文献求助30
18秒前
18秒前
聪明芒果完成签到,获得积分10
18秒前
Vvvvvvv应助虫二先生采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794