Kinetic Modeling of Hydrogen Generation via In Situ Combustion Gasification of Heavy Oil

燃烧 原位 动能 环境科学 材料科学 化学工程 化学 废物管理 工艺工程 石油工程 物理化学 有机化学 工程类 物理 量子力学
作者
Mohamed Amine Ifticene,Yunan Li,Ping Song,Qingwang Yuan
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:38 (20): 19787-19797
标识
DOI:10.1021/acs.energyfuels.4c03237
摘要

In the global push for sustainable energy, in situ combustion gasification (ISCG) has emerged as a transformative technology to leverage the world's abundant heavy oil reserves for producing carbon-zero hydrogen. Chemical kinetics are crucial for modeling subsurface hydrogen generation and optimizing production schemes to maximize hydrogen yield, which are however currently lacking. This study aims to develop the first experimentally validated kinetic model for hydrogen generation during ISCG of heavy oil. To accurately model ISCG reactions, particularly hydrogen generation, we combined kinetic cell experiments with numerical modeling to history match the experimental results. The temporal variation of generated gases, such as hydrogen, measured in laboratory experiments, served as the baseline for history matching. A differential evolution optimization algorithm was employed to calibrate the kinetic parameters of the numerical model with experimental results. The kinetic model for combustion reactions was accurately calibrated after 454 optimization runs with a history-matching error of 3.46%. This accuracy is attributed to the well-studied nature of heavy oil oxidation and the comprehensive reaction scheme employed. Conversely, calibrating the kinetic model for gasification reactions with kinetic cell experimental results proved more challenging yielding a history-matching error of 22.19% after 488 optimization runs. Despite significant uncertainties in hydrogen generation and consumption reactions due to limited knowledge of the gasification process, our proposed kinetic model can still predict hydrogen generation with a simplified but powerful reaction scheme, compared to previously proposed ISCG models that involve numerous reactions. This work introduces the first kinetic model to describe the hydrogen generation process during ISCG of heavy oil with rigorous experimental validation. This reliable kinetic model establishes a solid foundation for future multiscale reservoir simulation and further optimization of the field development for enhanced hydrogen production in a more sustainable manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ting5260完成签到,获得积分10
1秒前
yao完成签到,获得积分10
1秒前
!!完成签到,获得积分10
1秒前
neeeru完成签到,获得积分10
1秒前
2秒前
2秒前
丘比特应助大大怪采纳,获得10
2秒前
yydsyk完成签到,获得积分10
2秒前
YixiaoWang发布了新的文献求助10
3秒前
小刷子完成签到,获得积分10
3秒前
Aom发布了新的文献求助20
4秒前
可宝想当富婆完成签到 ,获得积分10
4秒前
火星上的天思完成签到,获得积分10
4秒前
4秒前
LIN完成签到,获得积分10
4秒前
JamesPei应助缓慢易云采纳,获得10
5秒前
CodeCraft应助Laraine采纳,获得10
6秒前
6秒前
卉酱完成签到,获得积分10
6秒前
Kate完成签到,获得积分10
6秒前
林夏发布了新的文献求助10
6秒前
小思雅发布了新的文献求助10
6秒前
ZJCGD发布了新的文献求助10
7秒前
踹脸大妈完成签到,获得积分10
7秒前
佳仪完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
Akim应助哎呀呀采纳,获得10
10秒前
sljzhangbiao11完成签到,获得积分10
11秒前
宋宋关注了科研通微信公众号
11秒前
JamesPei应助12334采纳,获得10
11秒前
11秒前
zzzzz给zzzzz的求助进行了留言
11秒前
梦在远方完成签到 ,获得积分10
11秒前
12秒前
烟花应助牛牛采纳,获得10
12秒前
满意的山水完成签到,获得积分20
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582