Kinetic Modeling of Hydrogen Generation via In Situ Combustion Gasification of Heavy Oil

燃烧 原位 动能 环境科学 材料科学 化学工程 化学 废物管理 工艺工程 石油工程 物理化学 有机化学 工程类 物理 量子力学
作者
Mohamed Amine Ifticene,Yunan Li,Ping Song,Qingwang Yuan
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:38 (20): 19787-19797
标识
DOI:10.1021/acs.energyfuels.4c03237
摘要

In the global push for sustainable energy, in situ combustion gasification (ISCG) has emerged as a transformative technology to leverage the world's abundant heavy oil reserves for producing carbon-zero hydrogen. Chemical kinetics are crucial for modeling subsurface hydrogen generation and optimizing production schemes to maximize hydrogen yield, which are however currently lacking. This study aims to develop the first experimentally validated kinetic model for hydrogen generation during ISCG of heavy oil. To accurately model ISCG reactions, particularly hydrogen generation, we combined kinetic cell experiments with numerical modeling to history match the experimental results. The temporal variation of generated gases, such as hydrogen, measured in laboratory experiments, served as the baseline for history matching. A differential evolution optimization algorithm was employed to calibrate the kinetic parameters of the numerical model with experimental results. The kinetic model for combustion reactions was accurately calibrated after 454 optimization runs with a history-matching error of 3.46%. This accuracy is attributed to the well-studied nature of heavy oil oxidation and the comprehensive reaction scheme employed. Conversely, calibrating the kinetic model for gasification reactions with kinetic cell experimental results proved more challenging yielding a history-matching error of 22.19% after 488 optimization runs. Despite significant uncertainties in hydrogen generation and consumption reactions due to limited knowledge of the gasification process, our proposed kinetic model can still predict hydrogen generation with a simplified but powerful reaction scheme, compared to previously proposed ISCG models that involve numerous reactions. This work introduces the first kinetic model to describe the hydrogen generation process during ISCG of heavy oil with rigorous experimental validation. This reliable kinetic model establishes a solid foundation for future multiscale reservoir simulation and further optimization of the field development for enhanced hydrogen production in a more sustainable manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fdu_sf发布了新的文献求助10
1秒前
大吧唧完成签到,获得积分10
2秒前
Cuikangjie发布了新的文献求助10
2秒前
3秒前
柠栀发布了新的文献求助10
3秒前
忘响关注了科研通微信公众号
3秒前
橙子完成签到,获得积分10
4秒前
4秒前
胡振宁完成签到 ,获得积分10
4秒前
隐形曼青应助tang采纳,获得10
5秒前
5秒前
5秒前
5秒前
Orange应助123采纳,获得10
6秒前
7秒前
8秒前
lilili应助晚宁采纳,获得10
8秒前
Ava应助橙子采纳,获得10
8秒前
感性的若冰完成签到 ,获得积分10
8秒前
居家家发布了新的文献求助10
11秒前
CipherSage应助Ahui采纳,获得10
11秒前
床头经济学完成签到,获得积分10
11秒前
蔡博颖发布了新的文献求助10
12秒前
赘婿应助可靠的墨镜采纳,获得10
12秒前
13秒前
14秒前
16秒前
16秒前
顺利的飞荷完成签到,获得积分0
17秒前
CipherSage应助wtt采纳,获得10
17秒前
华仔应助fdu_sf采纳,获得10
17秒前
yy发布了新的文献求助10
18秒前
cuckoo发布了新的文献求助10
19秒前
19秒前
20秒前
科研通AI6应助标致凝莲采纳,获得10
22秒前
22秒前
23秒前
xiaohua完成签到,获得积分10
23秒前
小晓俊发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493