Kinetic Modeling of Hydrogen Generation via In Situ Combustion Gasification of Heavy Oil

燃烧 原位 动能 环境科学 材料科学 化学工程 化学 废物管理 工艺工程 石油工程 物理化学 有机化学 工程类 物理 量子力学
作者
Mohamed Amine Ifticene,Yunan Li,Ping Song,Qingwang Yuan
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:38 (20): 19787-19797
标识
DOI:10.1021/acs.energyfuels.4c03237
摘要

In the global push for sustainable energy, in situ combustion gasification (ISCG) has emerged as a transformative technology to leverage the world's abundant heavy oil reserves for producing carbon-zero hydrogen. Chemical kinetics are crucial for modeling subsurface hydrogen generation and optimizing production schemes to maximize hydrogen yield, which are however currently lacking. This study aims to develop the first experimentally validated kinetic model for hydrogen generation during ISCG of heavy oil. To accurately model ISCG reactions, particularly hydrogen generation, we combined kinetic cell experiments with numerical modeling to history match the experimental results. The temporal variation of generated gases, such as hydrogen, measured in laboratory experiments, served as the baseline for history matching. A differential evolution optimization algorithm was employed to calibrate the kinetic parameters of the numerical model with experimental results. The kinetic model for combustion reactions was accurately calibrated after 454 optimization runs with a history-matching error of 3.46%. This accuracy is attributed to the well-studied nature of heavy oil oxidation and the comprehensive reaction scheme employed. Conversely, calibrating the kinetic model for gasification reactions with kinetic cell experimental results proved more challenging yielding a history-matching error of 22.19% after 488 optimization runs. Despite significant uncertainties in hydrogen generation and consumption reactions due to limited knowledge of the gasification process, our proposed kinetic model can still predict hydrogen generation with a simplified but powerful reaction scheme, compared to previously proposed ISCG models that involve numerous reactions. This work introduces the first kinetic model to describe the hydrogen generation process during ISCG of heavy oil with rigorous experimental validation. This reliable kinetic model establishes a solid foundation for future multiscale reservoir simulation and further optimization of the field development for enhanced hydrogen production in a more sustainable manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就不吃苹果完成签到,获得积分10
刚刚
明天吖在吗完成签到,获得积分10
刚刚
1秒前
完美世界应助米月采纳,获得10
2秒前
2秒前
浮云应助Honahlee采纳,获得20
2秒前
Orange应助落后的初露采纳,获得10
2秒前
夏小胖发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
朱先生完成签到 ,获得积分10
3秒前
无极微光应助朱霖采纳,获得20
3秒前
3秒前
吳某人完成签到,获得积分10
3秒前
英姑应助wd采纳,获得10
4秒前
柠檬不萌发布了新的文献求助20
4秒前
4秒前
Tinyvip完成签到,获得积分20
4秒前
CNYDNZB发布了新的文献求助10
5秒前
yrw完成签到,获得积分10
6秒前
YOITO发布了新的文献求助10
7秒前
Rubby应助黎书禾采纳,获得30
7秒前
AOI0504完成签到,获得积分10
7秒前
u亩完成签到 ,获得积分10
8秒前
唐HUGH完成签到,获得积分20
8秒前
feng完成签到,获得积分10
8秒前
坚强哑铃完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
ania完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
qqqqq发布了新的文献求助10
10秒前
10秒前
11秒前
稳重大米完成签到,获得积分20
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665433
求助须知:如何正确求助?哪些是违规求助? 4876596
关于积分的说明 15113729
捐赠科研通 4824584
什么是DOI,文献DOI怎么找? 2582801
邀请新用户注册赠送积分活动 1536780
关于科研通互助平台的介绍 1495335