材料科学
整改
双功能
阳极
枝晶(数学)
图层(电子)
锌
金属
化学工程
无机化学
纳米技术
冶金
电极
催化作用
有机化学
物理化学
电压
电气工程
化学
几何学
数学
工程类
作者
Jia Yao,Jingying Li,Chi Chen,L. Ge,Qian Wan,Yin Yang,Yi Gan,Lin Lv,Tao Li,Hanbin Wang,Jun Zhang,Houzhao Wan,Hao Wang
标识
DOI:10.1002/adfm.202414117
摘要
Abstract The slow transport dynamics and poor dendritic growth significantly hinder the performance of zinc metal batteries. Here, a unique difunctional ion rectification strategy is developed using vacuum evaporation technology to design a coated separator for efficient ion transport. The highly conductive Cu‐coated separator acts as an ion redistributor, ensuring homogenized electric field distribution. The excellent znophilicity of the copper coating acts as an ion accelerator, promoting ion transport and facilitating face‐to‐face zinc deposition on the separator. Consequently, this synergy enables stable battery operation at high current densities (cumulative capacity up to 10 800 mAh cm −2 at 8 mA cm −2 ) and high depth of discharge (over 200 h at 94% DOD). The Cu‐coated separator exhibits a reversible plating/stripping life of over 2400 h with an average coulombic efficiency of 99.88%. Notably, the Cu‐coated separator significantly enhances the rate performance and cycle capacity of Zn||V 6 O 13 and Zn||MnO 2 full cells. This functional separator with a difunctional ion rectification strategy presents a promising solution to the challenge of zinc metal anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI