Asymmetrified Benzothiadiazole‐Based Solid Additives Enable All‐Polymer Solar Cells with Efficiency Over 19%

三元运算 聚合物 能量转换效率 材料科学 扩散 接受者 相(物质) 有机太阳能电池 化学工程 聚合物混合物 激子 偶极子 聚合物太阳能电池 化学物理 纳米技术 化学 有机化学 热力学 光电子学 共聚物 物理 工程类 复合材料 量子力学 程序设计语言 计算机科学 凝聚态物理
作者
Tianqi Chen,Yanyi Zhong,Tainan Duan,Xian Tang,Wenkai Zhao,Jiaying Wang,Guanghao Lu,Guankui Long,Jiangbin Zhang,Kai Han,Xiangjian Wan,Bin Kan,Yongsheng Chen
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/ange.202412983
摘要

Disordered polymer chain entanglements within all‐polymer blends limit the formation of optimal donor‐acceptor phase separation. Therefore, developing effective methods to regulate morphology evolution is crucial for achieving optimal morphological features in all‐polymer organic solar cells (APSCs). In this study, two isomers, 4,5‐difluorobenzo‐c‐1,2,5‐thiadiazole (SF‐1) and 5,6‐difluorobenzo‐c‐1,2,5‐thiadiazole (SF‐2), were designed as solid additives based on the widely‐used electron‐deficient benzothiadiazole unit in nonfullerene acceptors. The incorporation of SF‐1 or SF‐2 into PM6:PY‐DT blend induces stronger molecular packing via molecular interaction, leading to the formation of continuous interpenetrated networks with suitable phase‐separation and vertical distribution. Furthermore, after treatment with SF‐1 and SF‐2, the exciton diffusion lengths for PY‐DT films are extended to over 40 nm, favoring exciton diffusion and charge transport. The asymmetrical SF‐2, characterized by an enhanced dipole moment, increases the power conversion efficiency (PCE) of PM6:PY‐DT‐based device to 18.83% due to stronger electrostatic interactions. Moreover, a ternary device strategy boosts the PCE of SF‐2‐treated APSC to over 19%. This work not only demonstrates one of the best performances of APSCs but also offers an effective approach to manipulate the morphology of all‐polymer blends using rational‐designed solid additives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
爆米花应助687采纳,获得10
4秒前
lonely完成签到,获得积分10
6秒前
6秒前
7秒前
Jay完成签到,获得积分10
8秒前
9秒前
怕黑的井完成签到,获得积分10
10秒前
可爱的函函应助yunsww采纳,获得10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
健壮诗桃完成签到,获得积分10
12秒前
12秒前
倩女幽魂完成签到,获得积分10
12秒前
13秒前
14秒前
wml应助大头采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
march发布了新的文献求助10
16秒前
感冒药完成签到 ,获得积分10
17秒前
LLLLLL发布了新的文献求助10
19秒前
英俊的铭应助菠萝采纳,获得10
19秒前
星辰大海应助Ferenar采纳,获得10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
超级的涵山完成签到,获得积分10
21秒前
22秒前
cc发布了新的文献求助10
23秒前
23秒前
完美世界应助闪闪的熠彤采纳,获得10
23秒前
Jay发布了新的文献求助10
25秒前
25秒前
王一鸣完成签到 ,获得积分10
26秒前
27秒前
27秒前
万安安发布了新的文献求助10
27秒前
28秒前
28秒前
冬云雀完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655668
求助须知:如何正确求助?哪些是违规求助? 4799897
关于积分的说明 15073450
捐赠科研通 4814035
什么是DOI,文献DOI怎么找? 2575522
邀请新用户注册赠送积分活动 1530862
关于科研通互助平台的介绍 1489554