三元运算
聚合物
能量转换效率
材料科学
扩散
接受者
相(物质)
有机太阳能电池
化学工程
聚合物混合物
激子
偶极子
聚合物太阳能电池
化学物理
纳米技术
化学
有机化学
热力学
光电子学
共聚物
物理
量子力学
计算机科学
工程类
复合材料
程序设计语言
凝聚态物理
作者
Tianqi Chen,Yanyi Zhong,Tainan Duan,Xian Tang,Wenkai Zhao,Jiaying Wang,Guanghao Lu,Guankui Long,Jiangbin Zhang,Kai Han,Xiangjian Wan,Bin Kan,Yongsheng Chen
标识
DOI:10.1002/ange.202412983
摘要
Disordered polymer chain entanglements within all‐polymer blends limit the formation of optimal donor‐acceptor phase separation. Therefore, developing effective methods to regulate morphology evolution is crucial for achieving optimal morphological features in all‐polymer organic solar cells (APSCs). In this study, two isomers, 4,5‐difluorobenzo‐c‐1,2,5‐thiadiazole (SF‐1) and 5,6‐difluorobenzo‐c‐1,2,5‐thiadiazole (SF‐2), were designed as solid additives based on the widely‐used electron‐deficient benzothiadiazole unit in nonfullerene acceptors. The incorporation of SF‐1 or SF‐2 into PM6:PY‐DT blend induces stronger molecular packing via molecular interaction, leading to the formation of continuous interpenetrated networks with suitable phase‐separation and vertical distribution. Furthermore, after treatment with SF‐1 and SF‐2, the exciton diffusion lengths for PY‐DT films are extended to over 40 nm, favoring exciton diffusion and charge transport. The asymmetrical SF‐2, characterized by an enhanced dipole moment, increases the power conversion efficiency (PCE) of PM6:PY‐DT‐based device to 18.83% due to stronger electrostatic interactions. Moreover, a ternary device strategy boosts the PCE of SF‐2‐treated APSC to over 19%. This work not only demonstrates one of the best performances of APSCs but also offers an effective approach to manipulate the morphology of all‐polymer blends using rational‐designed solid additives.
科研通智能强力驱动
Strongly Powered by AbleSci AI