Human sleeping pose estimation from IR images for in-bed patient monitoring using image processing and deep learning techniques

人工智能 图像处理 计算机视觉 深度学习 姿势 计算机科学 模式识别(心理学) 图像(数学)
作者
Shahriar Kabir Nahin,Sanjay Acharjee,Sawradip Saha,Aurick Das,Shahruk Hossain,Mohammad Ariful Haque
出处
期刊:Heliyon [Elsevier]
卷期号:10 (17): e36823-e36823
标识
DOI:10.1016/j.heliyon.2024.e36823
摘要

Human Pose Estimation (HPE) is a crucial step towards understanding people in images and videos. HPE provides geometric and motion information of the human body, which has been applied to a wide range of applications (e.g., human-computer interaction, motion analysis, augmented reality, virtual reality, healthcare, etc.). An extremely useful task of this kind is the 2D pose estimation of bedridden patients from infrared (IR) images. Here, the IR imaging modality is preferred due to privacy concerns and the need for monitoring both uncovered and covered patients at different levels of illumination. The major drawback of this research problem is the unavailability of covered examples, which are very costly to collect and time-consuming to label. In this work, a deep learning-based framework was developed for human sleeping pose estimation on covered images using only the uncovered training images. In the training scheme, two different image augmentation techniques, a statistical approach as well as a GAN-based approach, were explored for domain adaptation, where the statistical approach performed better. The accuracy of the model trained on the statistically augmented dataset was improved by 124 % as compared with the model trained on non-augmented images. To handle the scarcity of training infrared images, a transfer learning strategy was used by pre-training the model on an RGB pose estimation dataset, resulting in a further increment in accuracy of 4 %. Semi-supervised learning techniques, with a novel pose discriminator model in the loop, were adopted to utilize the unannotated training data, resulting in a further 3 % increase in accuracy. Thus, significant improvement has been shown in the case of 2D pose estimation from infrared images, with a comparatively small amount of annotated data and a large amount of unannotated data by using the proposed training pipeline powered by heavy augmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大的电脑完成签到,获得积分10
刚刚
yunidesuuu给yunidesuuu的求助进行了留言
1秒前
王旭萌完成签到,获得积分10
1秒前
木木完成签到 ,获得积分10
1秒前
1秒前
背对南通完成签到 ,获得积分10
2秒前
积极的小馒头应助111111采纳,获得10
2秒前
4秒前
7秒前
cxqygdn完成签到,获得积分10
7秒前
大模型应助朴实初夏采纳,获得10
8秒前
haowang发布了新的文献求助10
9秒前
9秒前
秋海棠发布了新的文献求助10
11秒前
FashionBoy应助吹气球的金毛采纳,获得10
11秒前
Orange应助石董宝宝采纳,获得10
13秒前
上官若男应助小凉采纳,获得10
13秒前
14秒前
萧不凡发布了新的文献求助50
14秒前
15秒前
无限的含羞草完成签到,获得积分10
16秒前
SciGPT应助所有事情都上岸采纳,获得10
17秒前
阿腾发布了新的文献求助10
19秒前
子衿完成签到 ,获得积分10
19秒前
如约而至发布了新的文献求助10
20秒前
Dayon完成签到 ,获得积分10
21秒前
22秒前
25秒前
寒冷寒安发布了新的文献求助10
25秒前
25秒前
斯文败类应助小蒋采纳,获得10
26秒前
Fx发布了新的文献求助10
30秒前
31秒前
32秒前
123完成签到,获得积分10
32秒前
32秒前
如约而至完成签到,获得积分20
34秒前
ding应助马界泡泡采纳,获得10
35秒前
zedmaster完成签到,获得积分10
35秒前
科研通AI2S应助IAMXC采纳,获得10
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226