Synthesizing Feature-Aligned and Category-aware Electronic Medical Records for Intracranial Aneurysm Rupture Prediction

计算机科学 机器学习 重采样 数据挖掘 合成数据 人工智能 变压器 电压 量子力学 物理
作者
Qian Yang,Caizi Li,Chubin Ou,Kang Li,Xiangyun Liao,Chuanzhi Duan,Lequan Yu,Weixin Si
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 7420-7433
标识
DOI:10.1109/jbhi.2024.3448459
摘要

Rupture prediction is crucial for precise treatment and follow-up management of patients with intracranial aneurysms (IAs). Considerable machine learning (ML) methods have been proposed to improve rupture prediction by leveraging electronic medical records (EMRs), however, data scarcity and category imbalance strongly influence performance. Thus, we propose a novel data synthesis method i.e., Transformer-based conditional GAN (TransCGAN), to synthesize highly authentic and category-aware EMRs to address above challenges. Specifically, we first align feature-wise context relationship and distribution between synthetic and original data to enhance synthetic data quality. To achieve this, we first integrate the Transformer structure into GAN to match the contextual relationship by processing the long-range dependencies among clinical factors and introduce a statistical loss to maintain distributional consistency by constraining the mean and variance of the synthesis features. Additionally, a conditional module is designed to assign the category of the synthesis data, thereby addressing the challenge of category imbalance. Subsequently, the synthetic data are merged with the original data to form a large-scale and category-balanced training dataset for IAs rupture prediction. Experimental results show that using TransCGAN's synthetic data enhances classifier performance, achieving AUC of 0.89 and outperforming state-of-the-art resampling methods by 5 %-33 % in F1 score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
虚幻白玉发布了新的文献求助10
3秒前
清客完成签到 ,获得积分10
3秒前
传奇3应助阳阳采纳,获得10
3秒前
5秒前
皮皮桂发布了新的文献求助10
5秒前
Hello应助无奈傲菡采纳,获得10
5秒前
故意的傲玉应助FENGHUI采纳,获得10
6秒前
7秒前
科研通AI5应助nextconnie采纳,获得10
8秒前
James完成签到,获得积分10
8秒前
9秒前
Lucas应助sun采纳,获得10
10秒前
KristenStewart完成签到,获得积分10
12秒前
过时的热狗完成签到,获得积分10
12秒前
点点完成签到,获得积分10
12秒前
Zxc发布了新的文献求助10
13秒前
涨芝士完成签到 ,获得积分10
14秒前
15秒前
无名欧文关注了科研通微信公众号
15秒前
科研123完成签到,获得积分10
17秒前
crescent完成签到 ,获得积分10
19秒前
无奈傲菡发布了新的文献求助10
19秒前
烟花应助123号采纳,获得10
22秒前
超帅的遥完成签到,获得积分10
22秒前
Zxc完成签到,获得积分10
23秒前
lbt完成签到 ,获得积分10
24秒前
yao完成签到 ,获得积分10
25秒前
25秒前
27秒前
28秒前
28秒前
doudou完成签到 ,获得积分10
28秒前
BCS完成签到,获得积分10
28秒前
领导范儿应助KYN采纳,获得10
28秒前
29秒前
独特的莫言完成签到,获得积分10
31秒前
lin发布了新的文献求助10
32秒前
aero完成签到 ,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849