Synthesizing Feature-Aligned and Category-aware Electronic Medical Records for Intracranial Aneurysm Rupture Prediction

计算机科学 机器学习 重采样 数据挖掘 合成数据 人工智能 变压器 电压 量子力学 物理
作者
Qian Yang,Caizi Li,Chubin Ou,Kang Li,Xiangyun Liao,Chuanzhi Duan,Lequan Yu,Weixin Si
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 7420-7433
标识
DOI:10.1109/jbhi.2024.3448459
摘要

Rupture prediction is crucial for precise treatment and follow-up management of patients with intracranial aneurysms (IAs). Considerable machine learning (ML) methods have been proposed to improve rupture prediction by leveraging electronic medical records (EMRs), however, data scarcity and category imbalance strongly influence performance. Thus, we propose a novel data synthesis method i.e., Transformer-based conditional GAN (TransCGAN), to synthesize highly authentic and category-aware EMRs to address above challenges. Specifically, we first align feature-wise context relationship and distribution between synthetic and original data to enhance synthetic data quality. To achieve this, we first integrate the Transformer structure into GAN to match the contextual relationship by processing the long-range dependencies among clinical factors and introduce a statistical loss to maintain distributional consistency by constraining the mean and variance of the synthesis features. Additionally, a conditional module is designed to assign the category of the synthesis data, thereby addressing the challenge of category imbalance. Subsequently, the synthetic data are merged with the original data to form a large-scale and category-balanced training dataset for IAs rupture prediction. Experimental results show that using TransCGAN's synthetic data enhances classifier performance, achieving AUC of 0.89 and outperforming state-of-the-art resampling methods by 5 %-33 % in F1 score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助hh采纳,获得10
2秒前
LR发布了新的文献求助10
2秒前
crystaler发布了新的文献求助10
2秒前
lm完成签到 ,获得积分10
2秒前
2秒前
落寞依珊发布了新的文献求助10
3秒前
3秒前
公司账号2发布了新的文献求助10
6秒前
mushanes发布了新的文献求助10
7秒前
无花果应助猪猪hero采纳,获得10
7秒前
顾矜应助Ta采纳,获得10
9秒前
9秒前
Mono完成签到 ,获得积分10
9秒前
10秒前
LR完成签到,获得积分10
12秒前
纯洁的晟宝儿完成签到,获得积分20
13秒前
Lucas应助公司账号2采纳,获得30
15秒前
犹豫海白完成签到,获得积分10
17秒前
田様应助就在咫尺之间采纳,获得10
18秒前
19秒前
lewis17发布了新的文献求助10
20秒前
张润琦完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助150
21秒前
521发布了新的文献求助10
22秒前
别不开星完成签到,获得积分10
24秒前
大个应助yongtao采纳,获得10
24秒前
25秒前
Rez完成签到,获得积分10
26秒前
26秒前
LYSM应助cqwswfl采纳,获得10
27秒前
27秒前
30秒前
C胖胖完成签到,获得积分10
30秒前
魏笑白发布了新的文献求助30
30秒前
32秒前
33秒前
nzh19802完成签到,获得积分10
34秒前
orang完成签到,获得积分10
34秒前
鱼儿完成签到,获得积分10
34秒前
英姑应助521采纳,获得10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673