选择性
催化作用
烷基
法拉第效率
化学
产量(工程)
材料科学
嫁接
纳米颗粒
氧化还原
表面改性
化学工程
组合化学
纳米技术
无机化学
电化学
电极
有机化学
物理化学
聚合物
工程类
冶金
作者
Wanhe Li,Yahui Chen,Chengqi Guo,Shuhan Jia,Yiying Zhou,Zhonghuan Liu,Enhui Jiang,Xiaoke Chen,Yue Zou,Pengwei Huo,Y.F. YAN,Zhi Zhu,Yun Hau Ng,Yanjun Gong,John C. Crittenden,Yan Yan
标识
DOI:10.1021/acscatal.4c02823
摘要
Addressing the efficient electrochemical conversion of CO2 (CO2RR) into valuable multicarbon (C2+) products necessitates innovative strategies to boost carbon (C1) intermediate coupling on catalyst surfaces. In this work, we introduce a surface-confinement strategy on Cu2O nanoparticles by long alkyl chain grafting to create a spatially confined environment, impeding C1 intermediate detachment and promoting C–C coupling in the CO2RR. The optimized C12–Cu2O sample exhibits a Faradaic efficiency (FE) over 63.0% for C2H4, more than double the yield of pristine Cu2O (FE = 25.7%). In situ ATR-FTIR spectroscopy provides direct evidence of rapid C1 intermediate enrichment and restricted diffusion within the surface-confined environment. Molecular dynamics simulations further support these findings by identifying a prolonged residency time that is proportionate to the alkyl chain length, thereby maximizing C2+ selectivity. This surface-confinement approach marks a previously overlooked but immensely promising paradigm in the catalyst design for the CO2RR.
科研通智能强力驱动
Strongly Powered by AbleSci AI