亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feasibility and potential of terahertz spectral and imaging technology for Apple Valsa canker detection: A preliminary investigation

化学 溃疡 太赫兹辐射 光谱成像 植物 遥感 光电子学 生物 物理 地质学
作者
Yibo Zhou,Xiaohui Wang,Keming Chen,Chaoyue Han,Hongpu Guan,Yan Wang,Yanru Zhao
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:327: 125308-125308
标识
DOI:10.1016/j.saa.2024.125308
摘要

Apple Valsa canker (AVC) caused by the Ascomycete Valsa mali, seriously constrains the production and quality of apple fruits. The symptomless incubation characteristics of Valsa mali make it highly challenging to detect AVC at an early infection stage. After infecting the wound of apple bark, the pathogenic hyphae of AVC will expand and colonize the phloem tissue. Meanwhile, various enzymes and toxic substances released by hyphae cause the decomposition of cellulose and lignin, and the generation of poisonous secondary metabolites in bark tissue. However, these early symptoms of AVC are invisible from the bark's appearance. Fortunately, Terahertz Spectral Imaging (ThzSI) technology with the advantage of penetrating, and fingerprinting is promising for detecting hidden or slight symptoms of the fungal infection. This study is a preliminary investigation of terahertz frequency-domain spectra for AVC in the early stage of infection. Healthy and two-week-infected apple tree branches were prepared for capturing ThzS images, and the spectral data were preprocessed by Multivariate scattering correction (MSC), Savitzky-Golay convolution smoothing (SG), and standard normal variate (SNV) respectively to remove data noise and improve data quality. Principal component analysis (PCA), competitive adaptive reweighted sampling (CARS), and random frog (RFROG) were employed to extract the spectral feature bands to eliminate redundant data and improve computational efficiency. Machine learning models were established based on the spectral features to detect AVC at an early infection stage, where 11 of them exhibited the best performance with F1-score of 99.72%. To further explore disease information in spatial spectra, imaging data were acquired using terahertz imaging technology. Based on imaging data, pseudo-color imaging, histogram equalization, and Otsu segmentation were employed to visualize early infection areas in apple barks. Furthermore, histogram feature (HF), shape feature (SF), and local binary pattern (LBP) extracted from terahertz spectral images were utilized to establish the SVM, RF, and KNN models. HF-SF-KNN and HF-SF-LBP-KNN with the best performance achieved F1-score of 98.82%. This study presents a preliminary application of terahertz spectral and imaging technology for early-stage AVC detection and demonstrates its feasibility. Additionally, it provides a new way to detect AVC, which expands the application of ThzSI technology in tree disease detection in orchards and lays the foundation for further research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
4秒前
ding应助Bo采纳,获得10
18秒前
25秒前
27秒前
Bo发布了新的文献求助10
32秒前
ssr发布了新的文献求助10
34秒前
36秒前
英俊的铭应助科研通管家采纳,获得10
37秒前
Ming应助科研通管家采纳,获得10
37秒前
Bo完成签到,获得积分10
42秒前
Lee完成签到,获得积分10
55秒前
1分钟前
陈冰发布了新的文献求助10
1分钟前
feizao完成签到,获得积分10
1分钟前
丘比特应助陈冰采纳,获得10
1分钟前
nito发布了新的文献求助10
1分钟前
nito完成签到,获得积分10
1分钟前
慕青应助nito采纳,获得10
1分钟前
2分钟前
调皮老头发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
TEMPO发布了新的文献求助10
2分钟前
nito发布了新的文献求助10
2分钟前
3分钟前
xx发布了新的文献求助10
3分钟前
3分钟前
可爱的函函应助Yikepp采纳,获得10
3分钟前
Lucas应助xx采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
yuki完成签到 ,获得积分10
3分钟前
nito发布了新的文献求助10
3分钟前
科研通AI6.1应助yukky采纳,获得30
3分钟前
科研通AI6.1应助Emma采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772690
求助须知:如何正确求助?哪些是违规求助? 5601217
关于积分的说明 15429935
捐赠科研通 4905602
什么是DOI,文献DOI怎么找? 2639524
邀请新用户注册赠送积分活动 1587405
关于科研通互助平台的介绍 1542337