Deep learning-based IDH1 gene mutation prediction using histopathological imaging and clinical data

IDH1 异柠檬酸脱氢酶 胶质瘤 放射基因组学 人工智能 深度学习 胶质母细胞瘤 ATRX公司 医学 计算机科学 病理 突变 基因 生物 癌症研究 无线电技术 遗传学 生物化学
作者
R. Nakagaki,Shyam Sundar Debsarkar,Hiroharu Kawanaka,Bruce J. Aronow,V. B. Surya Prasath
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:179: 108902-108902 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108902
摘要

In the field of histopathology, many studies on the classification of whole slide images (WSIs) using artificial intelligence (AI) technology have been reported. We have studied the disease progression assessment of glioma. Adult-type diffuse gliomas, a type of brain tumor, are classified into astrocytoma, oligodendroglioma, and glioblastoma. Astrocytoma and oligodendroglioma are also called low grade glioma (LGG), and glioblastoma is also called glioblastoma multiforme (GBM). LGG patients frequently have isocitrate dehydrogenase (IDH) mutations. Patients with IDH mutations have been reported to have a better prognosis than patients without IDH mutations. Therefore, IDH mutations are an essential indicator for the classification of glioma. That is why we focused on the IDH1 mutation. In this paper, we aimed to classify the presence or absence of the IDH1 mutation using WSIs and clinical data of glioma patients. Ensemble learning between the WSIs model and the clinical data model is used to classify the presence or absence of IDH1 mutation. By using slide level labels, we combined patch-based imaging information from hematoxylin and eosin (H & E) stained WSIs, along with clinical data using deep image feature extraction and machine learning classifier for predicting IDH1 gene mutation prediction versus wild-type across cohort of 546 patients. We experimented with different deep learning (DL) models including attention-based multiple instance learning (ABMIL) models on imaging data along with gradient boosting machine (LightGBM) for the clinical variables. Further, we used hyperparameter optimization to find the best overall model in terms of classification accuracy. We obtained the highest area under the curve (AUC) of 0.823 for WSIs, 0.782 for clinical data, and 0.852 for ensemble results using MaxViT and LightGBM combination, respectively. Our experimental results indicate that the overall accuracy of the AI models can be improved by using both clinical data and images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彳亍完成签到,获得积分10
1秒前
2秒前
4秒前
Lin完成签到,获得积分10
5秒前
5秒前
斯文败类应助乐观鑫鹏采纳,获得10
7秒前
浮游应助LHP采纳,获得10
8秒前
Lulul发布了新的文献求助10
9秒前
bai完成签到,获得积分10
9秒前
十一玮发布了新的文献求助10
10秒前
xdmhv完成签到,获得积分10
14秒前
15秒前
Akim应助Tian采纳,获得10
17秒前
水水的完成签到 ,获得积分10
19秒前
球球尧伞耳完成签到,获得积分10
22秒前
John完成签到,获得积分10
23秒前
25秒前
酷波er应助纯真猕猴桃采纳,获得10
25秒前
26秒前
didi发布了新的文献求助10
26秒前
万能图书馆应助qianqina采纳,获得30
26秒前
暮烟应助Lulul采纳,获得10
26秒前
虚幻的冬瓜完成签到 ,获得积分10
29秒前
小翼发布了新的文献求助10
31秒前
33秒前
36秒前
glay发布了新的文献求助10
40秒前
想睡觉的小笼包完成签到 ,获得积分10
40秒前
称心映寒完成签到 ,获得积分10
42秒前
isak完成签到 ,获得积分10
42秒前
rachel03发布了新的文献求助20
45秒前
某某完成签到 ,获得积分10
45秒前
48秒前
51秒前
巩佳铭发布了新的文献求助10
52秒前
隐形曼青应助科研通管家采纳,获得10
52秒前
李爱国应助科研通管家采纳,获得10
52秒前
田様应助科研通管家采纳,获得10
53秒前
李健应助十一玮采纳,获得10
53秒前
Hello应助科研通管家采纳,获得10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969