Deep learning-based IDH1 gene mutation prediction using histopathological imaging and clinical data

IDH1 异柠檬酸脱氢酶 胶质瘤 放射基因组学 人工智能 深度学习 胶质母细胞瘤 ATRX公司 医学 计算机科学 病理 突变 基因 生物 癌症研究 无线电技术 遗传学 生物化学
作者
R. Nakagaki,Shyam Sundar Debsarkar,Hiroharu Kawanaka,Bruce J. Aronow,V. B. Surya Prasath
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108902-108902 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108902
摘要

In the field of histopathology, many studies on the classification of whole slide images (WSIs) using artificial intelligence (AI) technology have been reported. We have studied the disease progression assessment of glioma. Adult-type diffuse gliomas, a type of brain tumor, are classified into astrocytoma, oligodendroglioma, and glioblastoma. Astrocytoma and oligodendroglioma are also called low grade glioma (LGG), and glioblastoma is also called glioblastoma multiforme (GBM). LGG patients frequently have isocitrate dehydrogenase (IDH) mutations. Patients with IDH mutations have been reported to have a better prognosis than patients without IDH mutations. Therefore, IDH mutations are an essential indicator for the classification of glioma. That is why we focused on the IDH1 mutation. In this paper, we aimed to classify the presence or absence of the IDH1 mutation using WSIs and clinical data of glioma patients. Ensemble learning between the WSIs model and the clinical data model is used to classify the presence or absence of IDH1 mutation. By using slide level labels, we combined patch-based imaging information from hematoxylin and eosin (H & E) stained WSIs, along with clinical data using deep image feature extraction and machine learning classifier for predicting IDH1 gene mutation prediction versus wild-type across cohort of 546 patients. We experimented with different deep learning (DL) models including attention-based multiple instance learning (ABMIL) models on imaging data along with gradient boosting machine (LightGBM) for the clinical variables. Further, we used hyperparameter optimization to find the best overall model in terms of classification accuracy. We obtained the highest area under the curve (AUC) of 0.823 for WSIs, 0.782 for clinical data, and 0.852 for ensemble results using MaxViT and LightGBM combination, respectively. Our experimental results indicate that the overall accuracy of the AI models can be improved by using both clinical data and images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aliime完成签到,获得积分10
2秒前
jsxxdr完成签到,获得积分10
2秒前
3秒前
丰富平蝶完成签到,获得积分10
3秒前
MRM发布了新的文献求助10
4秒前
大小姐发布了新的文献求助10
5秒前
爆米花应助Lizzy采纳,获得10
5秒前
顾矜应助Jenny采纳,获得10
7秒前
leilele发布了新的文献求助20
8秒前
务实小鸽子完成签到 ,获得积分10
8秒前
范高烽发布了新的文献求助10
9秒前
慧敏发布了新的文献求助10
9秒前
Taoray完成签到,获得积分10
11秒前
12秒前
我是老大应助想不出来采纳,获得10
12秒前
科研通AI5应助范高烽采纳,获得10
13秒前
13秒前
打打应助Jenny采纳,获得10
14秒前
jiwen完成签到,获得积分10
15秒前
动漫大师发布了新的文献求助30
16秒前
16秒前
晨曦发布了新的文献求助10
17秒前
yls完成签到,获得积分10
18秒前
大小姐完成签到,获得积分10
18秒前
18秒前
Akim应助俏皮觅风采纳,获得10
20秒前
Lizzy发布了新的文献求助10
21秒前
碧蓝的海豚完成签到,获得积分10
22秒前
无情的盼兰完成签到,获得积分10
22秒前
24秒前
慧敏完成签到,获得积分10
24秒前
欢_211发布了新的文献求助10
24秒前
华仔应助小乔采纳,获得10
25秒前
寻桃阿玉完成签到 ,获得积分10
25秒前
25秒前
CodeCraft应助含蓄的梦山采纳,获得10
26秒前
27秒前
27秒前
共享精神应助MOMO采纳,获得10
29秒前
renpp822发布了新的文献求助30
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672384
求助须知:如何正确求助?哪些是违规求助? 3228736
关于积分的说明 9781794
捐赠科研通 2939160
什么是DOI,文献DOI怎么找? 1610638
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174