Deep learning-based IDH1 gene mutation prediction using histopathological imaging and clinical data

IDH1 异柠檬酸脱氢酶 胶质瘤 放射基因组学 人工智能 深度学习 胶质母细胞瘤 ATRX公司 医学 计算机科学 病理 突变 基因 生物 癌症研究 无线电技术 遗传学 生物化学
作者
R. Nakagaki,Shyam Sundar Debsarkar,Hiroharu Kawanaka,Bruce J. Aronow,V. B. Surya Prasath
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108902-108902 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108902
摘要

In the field of histopathology, many studies on the classification of whole slide images (WSIs) using artificial intelligence (AI) technology have been reported. We have studied the disease progression assessment of glioma. Adult-type diffuse gliomas, a type of brain tumor, are classified into astrocytoma, oligodendroglioma, and glioblastoma. Astrocytoma and oligodendroglioma are also called low grade glioma (LGG), and glioblastoma is also called glioblastoma multiforme (GBM). LGG patients frequently have isocitrate dehydrogenase (IDH) mutations. Patients with IDH mutations have been reported to have a better prognosis than patients without IDH mutations. Therefore, IDH mutations are an essential indicator for the classification of glioma. That is why we focused on the IDH1 mutation. In this paper, we aimed to classify the presence or absence of the IDH1 mutation using WSIs and clinical data of glioma patients. Ensemble learning between the WSIs model and the clinical data model is used to classify the presence or absence of IDH1 mutation. By using slide level labels, we combined patch-based imaging information from hematoxylin and eosin (H & E) stained WSIs, along with clinical data using deep image feature extraction and machine learning classifier for predicting IDH1 gene mutation prediction versus wild-type across cohort of 546 patients. We experimented with different deep learning (DL) models including attention-based multiple instance learning (ABMIL) models on imaging data along with gradient boosting machine (LightGBM) for the clinical variables. Further, we used hyperparameter optimization to find the best overall model in terms of classification accuracy. We obtained the highest area under the curve (AUC) of 0.823 for WSIs, 0.782 for clinical data, and 0.852 for ensemble results using MaxViT and LightGBM combination, respectively. Our experimental results indicate that the overall accuracy of the AI models can be improved by using both clinical data and images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyy发布了新的文献求助10
1秒前
lxhhh发布了新的文献求助10
1秒前
2秒前
2秒前
多看点文献吧完成签到,获得积分10
3秒前
3秒前
ding应助火山羊采纳,获得10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助50
4秒前
刘雪应助文件撤销了驳回
5秒前
chenyufeng完成签到,获得积分10
5秒前
6秒前
东风徐来发布了新的文献求助200
6秒前
李echo发布了新的文献求助10
6秒前
6秒前
6秒前
hxueh发布了新的文献求助10
7秒前
7秒前
7秒前
xxx发布了新的文献求助10
8秒前
cccxq完成签到,获得积分20
8秒前
在水一方应助小团子采纳,获得10
8秒前
Julie完成签到,获得积分10
8秒前
9秒前
所所应助小小酥被卷了采纳,获得10
9秒前
Yan发布了新的文献求助10
10秒前
机灵千萍完成签到,获得积分10
11秒前
科研通AI5应助平常平凡采纳,获得10
11秒前
yyy完成签到,获得积分20
12秒前
澈哩完成签到 ,获得积分10
12秒前
yuanjingnan发布了新的文献求助10
12秒前
北辰发布了新的文献求助10
12秒前
2896186249发布了新的文献求助300
12秒前
彩色元瑶发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
寒假工完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069021
求助须知:如何正确求助?哪些是违规求助? 4290502
关于积分的说明 13367811
捐赠科研通 4110451
什么是DOI,文献DOI怎么找? 2250993
邀请新用户注册赠送积分活动 1256182
关于科研通互助平台的介绍 1188650