Boosting Li-Ion Conductivity of Fluoride Solid Electrolyte by Low-Temperature Molten Salt Ablation and Particle Boundary Doping

离子电导率 材料科学 电导率 电解质 电化学窗口 无机化学 卤化物 快离子导体 化学工程 电极 化学 物理化学 工程类
作者
Xianhui Nie,Lei Meng,Jiulin Hu,Chilin Li
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (43): 30099-30112 被引量:8
标识
DOI:10.1021/acsnano.4c12399
摘要

Halide solid electrolytes (SEs) are attracting great attention, owing to their high ionic conductivity and excellent high-voltage compatibility. However, severe moisture sensitivity, poor thermal stability, and instability at the lithium metal anode interface with chloride and bromide SEs retard their applications in solid-state lithium metal batteries. Fluoride SEs are expected to solve these problems, but they are now plagued by inadequate room-temperature (RT) ionic conductivity. Herein, a low-temperature molten salt (LiCl+1.33AlCl3) ablation method is proposed to enhance the ionic conductivity of monoclinic Li3GaF6 by particle boundary doping. The RT ionic conductivity of Li3GaF6 is correspondingly increased by 2 orders of magnitude, and the conductivity reaches 10–4 S cm–1 at 60 °C. The improved ionic conductivity benefits from the enhancement of interfacial ion transport, with the formation of more conductive chlorine-doped Li3GaF6–xClx and in situ binder LiAlCl4 to cement surrounding nanoparticles. The as-synthesized Li3GaF6 demonstrates outstanding humidity tolerance without conductivity degradation after exposure to a relative humidity of up to 35%. It also exhibits the widest electrochemical stability window experimentally (close to 6 V) compared with other state-of-the-art SEs. The solid-state Li/Li3GaF6/LiFePO4 cell with a stable Li+-conductive polymer interface is successfully driven for at least 200 cycles at 0.5C. Our study provides a solution to various chemical and electrochemical stability issues encountered by the halide SE family.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li发布了新的文献求助10
刚刚
木木夕云完成签到,获得积分20
1秒前
1秒前
3秒前
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
张雷应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
英姑应助云襄采纳,获得10
3秒前
yiyi发布了新的文献求助10
4秒前
毛哥完成签到,获得积分10
4秒前
FallWhit3发布了新的文献求助10
4秒前
咩咩咩发布了新的文献求助10
4秒前
汉堡包应助王星星采纳,获得10
4秒前
4秒前
5秒前
5秒前
22完成签到,获得积分20
6秒前
7秒前
安的沛白发布了新的文献求助10
7秒前
7秒前
帅气无招完成签到 ,获得积分20
8秒前
liu完成签到,获得积分10
9秒前
时尚白凡完成签到 ,获得积分10
10秒前
10秒前
11秒前
木木夕云发布了新的文献求助10
12秒前
12秒前
王星星完成签到,获得积分10
13秒前
13秒前
小熊熊完成签到,获得积分10
13秒前
13秒前
14秒前
安的沛白完成签到,获得积分10
14秒前
CipherSage应助terminus采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975836
求助须知:如何正确求助?哪些是违规求助? 3520174
关于积分的说明 11201364
捐赠科研通 3256576
什么是DOI,文献DOI怎么找? 1798362
邀请新用户注册赠送积分活动 877539
科研通“疑难数据库(出版商)”最低求助积分说明 806426