Boosting Li-Ion Conductivity of Fluoride Solid Electrolyte by Low-Temperature Molten Salt Ablation and Particle Boundary Doping

材料科学 熔盐 电导率 电解质 兴奋剂 氟化物 离子 盐(化学) 无机化学 粒子(生态学) 化学工程 电极 冶金 化学 物理化学 有机化学 光电子学 海洋学 工程类 地质学
作者
Xianhui Nie,Lei Meng,Jiulin Hu,Chilin Li
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (43): 30099-30112
标识
DOI:10.1021/acsnano.4c12399
摘要

Halide solid electrolytes (SEs) are attracting great attention, owing to their high ionic conductivity and excellent high-voltage compatibility. However, severe moisture sensitivity, poor thermal stability, and instability at the lithium metal anode interface with chloride and bromide SEs retard their applications in solid-state lithium metal batteries. Fluoride SEs are expected to solve these problems, but they are now plagued by inadequate room-temperature (RT) ionic conductivity. Herein, a low-temperature molten salt (LiCl+1.33AlCl3) ablation method is proposed to enhance the ionic conductivity of monoclinic Li3GaF6 by particle boundary doping. The RT ionic conductivity of Li3GaF6 is correspondingly increased by 2 orders of magnitude, and the conductivity reaches 10–4 S cm–1 at 60 °C. The improved ionic conductivity benefits from the enhancement of interfacial ion transport, with the formation of more conductive chlorine-doped Li3GaF6–xClx and in situ binder LiAlCl4 to cement surrounding nanoparticles. The as-synthesized Li3GaF6 demonstrates outstanding humidity tolerance without conductivity degradation after exposure to a relative humidity of up to 35%. It also exhibits the widest electrochemical stability window experimentally (close to 6 V) compared with other state-of-the-art SEs. The solid-state Li/Li3GaF6/LiFePO4 cell with a stable Li+-conductive polymer interface is successfully driven for at least 200 cycles at 0.5C. Our study provides a solution to various chemical and electrochemical stability issues encountered by the halide SE family.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助科研通管家采纳,获得10
刚刚
张益萌应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
美好念梦应助科研通管家采纳,获得10
1秒前
1秒前
iNk应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
隐形曼青应助cleff采纳,获得20
1秒前
1秒前
苏瑾完成签到,获得积分10
1秒前
2秒前
李健应助谨慎的乐松采纳,获得10
5秒前
dong完成签到,获得积分10
6秒前
蔓蔓发布了新的文献求助10
6秒前
cleff完成签到 ,获得积分10
8秒前
dong发布了新的文献求助10
9秒前
9秒前
wanci应助hhh采纳,获得10
10秒前
过时的不评完成签到,获得积分10
10秒前
小八完成签到,获得积分10
11秒前
louis完成签到,获得积分10
14秒前
华仔应助Cindy采纳,获得10
15秒前
wanci应助蔡强采纳,获得10
15秒前
16秒前
弦和完成签到,获得积分10
17秒前
专注的明轩完成签到 ,获得积分10
19秒前
22秒前
cleff发布了新的文献求助20
22秒前
xxxqqq完成签到,获得积分10
26秒前
昵称发布了新的文献求助10
27秒前
北方完成签到,获得积分10
28秒前
29秒前
情怀应助cleff采纳,获得10
33秒前
123发布了新的文献求助10
33秒前
33秒前
35秒前
pluto应助犹豫忆南采纳,获得70
35秒前
36秒前
香蕉觅云应助勤奋的小伙采纳,获得10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304435
求助须知:如何正确求助?哪些是违规求助? 2938356
关于积分的说明 8488527
捐赠科研通 2612858
什么是DOI,文献DOI怎么找? 1426905
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647376