A Feature Fusion Model Based on Temporal Convolutional Network for Automatic Sleep Staging Using Single-channel EEG

计算机科学 脑电图 人工智能 特征(语言学) 卷积神经网络 模式识别(心理学) 频道(广播) 特征提取 睡眠阶段 睡眠(系统调用) 语音识别 医学 多导睡眠图 电信 语言学 哲学 精神科 操作系统
作者
Jiameng Bao,Guangming Wang,Tianyu Wang,Ning Wu,Shimin Hu,Won Hee Lee,Sio‐Long Lo,Xiangguo Yan,Yang Zheng,Gang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6641-6652 被引量:2
标识
DOI:10.1109/jbhi.2024.3457969
摘要

Sleep staging is a crucial task in sleep monitoring and diagnosis, but clinical sleep staging is both time-consuming and subjective. In this study, we proposed a novel deep learning algorithm named feature fusion temporal convolutional network (FFTCN) for automatic sleep staging using single-channel EEG data. This algorithm employed a one-dimensional convolutional neural network (1D-CNN) to extract temporal features from raw EEG, and a two-dimensional CNN (2D-CNN) to extract time-frequency features from spectrograms generated through continuous wavelet transform (CWT) at the epoch level. These features were subsequently fused and further fed into a temporal convolutional network (TCN) to classify sleep stages at the sequence level. Moreover, a two-step training strategy was used to enhance the model's performance on an imbalanced dataset. Our proposed method exhibits superior performance in the 5-class classification task for healthy subjects, as evaluated on the SHHS-1, Sleep-EDF-153, and ISRUC-S1 datasets. This work provided a straightforward and promising method for improving the accuracy of automatic sleep staging using only single-channel EEG, and the proposed method exhibited great potential for future applications in professional sleep monitoring, which could effectively alleviate the workload of sleep technicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助程破茧采纳,获得10
刚刚
华仔应助biocx采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
慕青应助空城旧梦采纳,获得10
3秒前
3秒前
3秒前
FashionBoy应助DYZ采纳,获得10
3秒前
3秒前
科研好累哦完成签到,获得积分10
3秒前
852应助77不88采纳,获得10
4秒前
4秒前
大力的乐曲完成签到,获得积分10
4秒前
罗备完成签到,获得积分10
5秒前
tooty完成签到,获得积分10
6秒前
dake完成签到,获得积分10
6秒前
Lin发布了新的文献求助10
6秒前
6秒前
Micheallee完成签到,获得积分10
7秒前
卢西完成签到,获得积分10
7秒前
7秒前
wzz发布了新的文献求助10
8秒前
摇落月完成签到,获得积分10
9秒前
科研通AI6应助yangyj采纳,获得10
12秒前
12秒前
12秒前
明亮梦山完成签到 ,获得积分10
13秒前
wdw2501完成签到,获得积分10
13秒前
14秒前
一一完成签到,获得积分10
14秒前
15秒前
DYZ发布了新的文献求助10
15秒前
16秒前
jjh完成签到,获得积分10
17秒前
SciGPT应助超级寒凝采纳,获得10
17秒前
17秒前
18秒前
outlast完成签到,获得积分10
18秒前
19秒前
忐忑的龙猫完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539728
求助须知:如何正确求助?哪些是违规求助? 4626494
关于积分的说明 14599495
捐赠科研通 4567353
什么是DOI,文献DOI怎么找? 2504016
邀请新用户注册赠送积分活动 1481719
关于科研通互助平台的介绍 1453352