A Feature Fusion Model Based on Temporal Convolutional Network for Automatic Sleep Staging Using Single-Channel EEG

计算机科学 脑电图 人工智能 特征(语言学) 卷积神经网络 模式识别(心理学) 频道(广播) 特征提取 睡眠阶段 睡眠(系统调用) 语音识别 医学 多导睡眠图 电信 语言学 哲学 精神科 操作系统
作者
Jiameng Bao,Guangming Wang,Tianyu Wang,Ning Wu,Shimin Hu,Won Hee Lee,Sio‐Long Lo,Xiangguo Yan,Yang Zheng,Gang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6641-6652 被引量:8
标识
DOI:10.1109/jbhi.2024.3457969
摘要

Sleep staging is a crucial task in sleep monitoring and diagnosis, but clinical sleep staging is both time-consuming and subjective. In this study, we proposed a novel deep learning algorithm named feature fusion temporal convolutional network (FFTCN) for automatic sleep staging using single-channel EEG data. This algorithm employed a one-dimensional convolutional neural network (1D-CNN) to extract temporal features from raw EEG, and a two-dimensional CNN (2D-CNN) to extract time-frequency features from spectrograms generated through continuous wavelet transform (CWT) at the epoch level. These features were subsequently fused and further fed into a temporal convolutional network (TCN) to classify sleep stages at the sequence level. Moreover, a two-step training strategy was used to enhance the model's performance on an imbalanced dataset. Our proposed method exhibits superior performance in the 5-class classification task for healthy subjects, as evaluated on the SHHS-1, Sleep-EDF-153, and ISRUC-S1 datasets. This work provided a straightforward and promising method for improving the accuracy of automatic sleep staging using only single-channel EEG, and the proposed method exhibited great potential for future applications in professional sleep monitoring, which could effectively alleviate the workload of sleep technicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
小马甲应助下次一定采纳,获得10
1秒前
小二郎应助jg采纳,获得10
2秒前
2秒前
5秒前
6秒前
6秒前
6秒前
茹茹发布了新的文献求助10
7秒前
一号位完成签到,获得积分20
7秒前
聆听发布了新的文献求助10
7秒前
7秒前
能干彤完成签到,获得积分10
8秒前
越旻发布了新的文献求助10
10秒前
下次一定发布了新的文献求助10
10秒前
11秒前
laifeihong发布了新的文献求助50
12秒前
Jessica完成签到,获得积分0
12秒前
量子星尘发布了新的文献求助10
12秒前
出其东门完成签到,获得积分10
12秒前
核动力驴应助霍元甲采纳,获得10
13秒前
上官若男应助霍元甲采纳,获得10
13秒前
Mida应助开花不铁树采纳,获得10
16秒前
打打应助chemlink采纳,获得10
19秒前
19秒前
鱻雩关注了科研通微信公众号
21秒前
细心的思远完成签到,获得积分20
22秒前
爆米花应助ap2010采纳,获得30
22秒前
24秒前
24秒前
李健的小迷弟应助isabellae采纳,获得10
24秒前
开花不铁树完成签到,获得积分20
25秒前
26秒前
852应助鸡蛋灌饼与掉渣饼采纳,获得10
26秒前
26秒前
27秒前
Criminology34应助二五九采纳,获得10
29秒前
晚星发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690