A Feature Fusion Model Based on Temporal Convolutional Network for Automatic Sleep Staging Using Single-channel EEG

计算机科学 脑电图 人工智能 特征(语言学) 卷积神经网络 模式识别(心理学) 频道(广播) 特征提取 睡眠阶段 睡眠(系统调用) 语音识别 医学 多导睡眠图 电信 语言学 哲学 精神科 操作系统
作者
Jiameng Bao,Guangming Wang,Tianyu Wang,Ning Wu,Shimin Hu,Won Hee Lee,Sio‐Long Lo,Xiangguo Yan,Yang Zheng,Gang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6641-6652 被引量:1
标识
DOI:10.1109/jbhi.2024.3457969
摘要

Sleep staging is a crucial task in sleep monitoring and diagnosis, but clinical sleep staging is both time-consuming and subjective. In this study, we proposed a novel deep learning algorithm named feature fusion temporal convolutional network (FFTCN) for automatic sleep staging using single-channel EEG data. This algorithm employed a one-dimensional convolutional neural network (1D-CNN) to extract temporal features from raw EEG, and a two-dimensional CNN (2D-CNN) to extract time-frequency features from spectrograms generated through continuous wavelet transform (CWT) at the epoch level. These features were subsequently fused and further fed into a temporal convolutional network (TCN) to classify sleep stages at the sequence level. Moreover, a two-step training strategy was used to enhance the model's performance on an imbalanced dataset. Our proposed method exhibits superior performance in the 5-class classification task for healthy subjects, as evaluated on the SHHS-1, Sleep-EDF-153, and ISRUC-S1 datasets. This work provided a straightforward and promising method for improving the accuracy of automatic sleep staging using only single-channel EEG, and the proposed method exhibited great potential for future applications in professional sleep monitoring, which could effectively alleviate the workload of sleep technicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明亮的八宝粥完成签到,获得积分10
刚刚
mayungui发布了新的文献求助10
刚刚
大型海狮完成签到,获得积分10
刚刚
搜集达人应助科研菜鸟采纳,获得10
1秒前
雨天有伞完成签到,获得积分10
1秒前
蕾子发布了新的文献求助10
1秒前
1秒前
zhui发布了新的文献求助10
1秒前
wanci应助jxcandice采纳,获得10
1秒前
factor发布了新的文献求助10
1秒前
2秒前
泊声发布了新的文献求助20
2秒前
narthon完成签到 ,获得积分10
2秒前
梦幻完成签到,获得积分10
2秒前
1604531786完成签到,获得积分10
2秒前
研友_LMNjkn发布了新的文献求助10
3秒前
xiao发布了新的文献求助10
3秒前
ww发布了新的文献求助10
3秒前
4秒前
Olsters发布了新的文献求助10
4秒前
深情安青应助该睡觉啦采纳,获得10
4秒前
4秒前
SEV完成签到,获得积分20
4秒前
愉快迎荷完成签到,获得积分10
5秒前
矮小的聪展完成签到,获得积分10
6秒前
factor完成签到,获得积分10
6秒前
Hello应助李来仪采纳,获得10
7秒前
SEV发布了新的文献求助10
7秒前
7秒前
7秒前
坚强亦丝应助隐形机器猫采纳,获得10
8秒前
小马甲应助SCI采纳,获得10
9秒前
老疯智发布了新的文献求助10
9秒前
sweetbearm应助通~采纳,获得10
9秒前
神凰完成签到,获得积分10
9秒前
Z小姐发布了新的文献求助10
10秒前
NexusExplorer应助白泽采纳,获得10
10秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794