A Feature Fusion Model Based on Temporal Convolutional Network for Automatic Sleep Staging Using Single-channel EEG

计算机科学 脑电图 人工智能 特征(语言学) 卷积神经网络 模式识别(心理学) 频道(广播) 特征提取 睡眠阶段 睡眠(系统调用) 语音识别 医学 多导睡眠图 电信 操作系统 精神科 哲学 语言学
作者
Jiameng Bao,Guangming Wang,Tianyu Wang,Ning Wu,Shimin Hu,Won Hee Lee,Sio‐Long Lo,Xiangguo Yan,Yang Zheng,Gang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6641-6652 被引量:1
标识
DOI:10.1109/jbhi.2024.3457969
摘要

Sleep staging is a crucial task in sleep monitoring and diagnosis, but clinical sleep staging is both time-consuming and subjective. In this study, we proposed a novel deep learning algorithm named feature fusion temporal convolutional network (FFTCN) for automatic sleep staging using single-channel EEG data. This algorithm employed a one-dimensional convolutional neural network (1D-CNN) to extract temporal features from raw EEG, and a two-dimensional CNN (2D-CNN) to extract time-frequency features from spectrograms generated through continuous wavelet transform (CWT) at the epoch level. These features were subsequently fused and further fed into a temporal convolutional network (TCN) to classify sleep stages at the sequence level. Moreover, a two-step training strategy was used to enhance the model's performance on an imbalanced dataset. Our proposed method exhibits superior performance in the 5-class classification task for healthy subjects, as evaluated on the SHHS-1, Sleep-EDF-153, and ISRUC-S1 datasets. This work provided a straightforward and promising method for improving the accuracy of automatic sleep staging using only single-channel EEG, and the proposed method exhibited great potential for future applications in professional sleep monitoring, which could effectively alleviate the workload of sleep technicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玉鱼儿完成签到 ,获得积分10
1秒前
万能图书馆应助零柒采纳,获得10
1秒前
1秒前
请你不要到处扣扣完成签到,获得积分10
2秒前
七七发布了新的文献求助10
2秒前
3秒前
4秒前
顾右发布了新的文献求助10
5秒前
5秒前
6秒前
一见喜发布了新的文献求助10
7秒前
葱姜蒜辣椒香菜我全要完成签到,获得积分10
7秒前
yys完成签到,获得积分10
9秒前
yys10l完成签到,获得积分10
9秒前
曦子发布了新的文献求助10
9秒前
9秒前
kk发布了新的文献求助10
10秒前
10秒前
Linson完成签到,获得积分10
10秒前
ysq完成签到,获得积分10
10秒前
10秒前
BoBo应助颜林林采纳,获得10
12秒前
舒服的善若完成签到 ,获得积分10
14秒前
Linson发布了新的文献求助10
15秒前
三重积分咖啡完成签到 ,获得积分10
16秒前
ysq发布了新的文献求助10
16秒前
16秒前
小江的阿狸完成签到 ,获得积分10
17秒前
yyy发布了新的文献求助10
17秒前
BINGBING1230发布了新的文献求助10
18秒前
LIU完成签到 ,获得积分10
20秒前
语雪完成签到,获得积分10
21秒前
梧桐发布了新的文献求助10
21秒前
nuoran完成签到,获得积分10
22秒前
22秒前
lin发布了新的文献求助10
23秒前
cach完成签到,获得积分10
24秒前
yyy完成签到,获得积分10
25秒前
26秒前
bkagyin应助科研通管家采纳,获得10
26秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888