细胞分裂素
铵
氮气
脱氢酶
生物
氮气循环
选择性氧化酶
植物
化学
酶
生物化学
基因
呼吸
有机化学
生长素
作者
Lun Li,Letian Jia,Xingliang Duan,Yuanda Lv,Chengyu Ye,Chengqiang Ding,Yuwen Zhang,Weicong Qi,Hans Motte,Tom Beeckman,Le Luo,Wei Xuan
摘要
Plant root system is significantly influenced by high soil levels of ammonium nitrogen, leading to reduced root elongation and enhanced lateral root branching. In Arabidopsis, these processes have been reported to be mediated by phytohormones and their downstream signaling pathways, while the controlling mechanisms remain elusive in crops. Through a transcriptome analysis of roots subjected to high/low ammonium treatments, we identified a cytokinin oxidase/dehydrogenase encoding gene, CKX3, whose expression is induced by high ammonium. Knocking out CKX3 and its homologue CKX8 results in shorter seminal roots, fewer lateral roots, and reduced sensitivity to high ammonium. Endogenous cytokinin levels are elevated by high ammonium or in ckx3 mutants. Cytokinin application results in shorter seminal roots and fewer lateral roots in wild-type, mimicking the root responses of ckx3 mutants to high ammonium. Furthermore, CKX3 is transcriptionally activated by type-B RR25 and RR26, and ckx3 mutants have reduced auxin content and signaling in roots under low ammonium. This study identified RR25/26-CKX3-cytokinin as a signal module that mediates root responses to external ammonium by modulating of auxin signaling in the root meristem and lateral root primordium. This highlights the critical role of cytokinin metabolism in regulating rice root development in response to ammonium.
科研通智能强力驱动
Strongly Powered by AbleSci AI