Traffic flow parameter estimation for complex environments based on improved YOLOv8

估计 计算机科学 流量(数学) 数学 工程类 系统工程 几何学
作者
Wenhuan Ai,Jingming Zeng,Zhengqing Lei,Danyang Li
标识
DOI:10.1177/09544070241287582
摘要

Estimation of traffic flow parameters based on computer vision is still a very popular challenge. In particular, the detection problems such as occlusion, small targets, luminance variations, and lighting jitter, etc., are caused by dense traffic scenes and complex weather conditions. Previous studies about detecting and tracking methods focused on daytime and nighttime or single weather condition, but the performance of this model will decline dramatically due to complex conditions. In this paper, a framework for estimating traffic flow parameters in complex environments is presented, in which Ghost-YOLOv8 vehicle detection model is proposed. GhostConv is used to replace part of Conv and a new C2fGhost module is designed to replace part of C2f, reducing the number of parameters and improving the detection performance of the model; The global attention mechanism module is added to the neck network, which strengthens the semantic and location information in the features and improves the model’s ability of feature fusion; In view of the loss of semantic information caused by different scales in detecting small targets, a small target detection layer is added to enhance a combination of deep and shallow semantic information; The GIoU bounding loss function is used instead of the original loss function, which improves the performance of the network’s bounding box regression. Then, combining DeepSORT tracking algorithm and virtual line counting method, the proposed framework estimates traffic flow parameters, including volume, speed, and density in complex environments. The experimental results show that compared with the original model in the UA-DETRAC dataset, the improved YOLOv8 model’s the accuracy is increased by 1.4%, and the parameter number and model size are reduced by 0.229G and 0.2MB respectively. In addition, the framework has good robustness, reaching 97.56% accuracy when estimating average traffic flow parameters. It is sufficient to overcome complex weather conditions and effectively help control traffic for intelligent transportation systems and traffic management to provide good data support. In conclusion, it shows that the model can reduce the number and size of model parameters and improve the detection precision as well as meeting the requirements of edge computing devices and having better real-time performance, so it has practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456完成签到 ,获得积分10
刚刚
诸葛丞相完成签到 ,获得积分10
4秒前
byby完成签到,获得积分10
5秒前
tienslord完成签到,获得积分10
5秒前
河豚完成签到 ,获得积分10
6秒前
YYY完成签到,获得积分10
7秒前
倪小呆完成签到 ,获得积分10
7秒前
1111完成签到,获得积分20
8秒前
山雀完成签到,获得积分10
10秒前
苗苗完成签到,获得积分10
11秒前
Raul完成签到 ,获得积分10
11秒前
clare完成签到 ,获得积分10
12秒前
Herbs完成签到 ,获得积分10
14秒前
Much完成签到 ,获得积分10
16秒前
Rainy完成签到 ,获得积分10
16秒前
shierfang完成签到 ,获得积分10
16秒前
健壮问兰完成签到 ,获得积分10
16秒前
方兴未艾完成签到 ,获得积分10
16秒前
18秒前
冲冲冲完成签到,获得积分10
18秒前
Jasper应助咪咪虾条采纳,获得10
19秒前
顺利完成签到,获得积分10
19秒前
贵贵完成签到,获得积分10
20秒前
01259完成签到 ,获得积分10
20秒前
舒适静丹完成签到,获得积分10
23秒前
酷酷的碳完成签到 ,获得积分10
23秒前
yoyocici1505完成签到,获得积分10
25秒前
Akim应助超帅傲白采纳,获得10
25秒前
快乐小狗完成签到 ,获得积分10
27秒前
橘子小西完成签到 ,获得积分10
29秒前
bzdqsm完成签到,获得积分10
30秒前
wyn完成签到,获得积分10
31秒前
不可靠月亮完成签到,获得积分10
33秒前
充电宝应助依依采纳,获得10
35秒前
35秒前
38秒前
yjy完成签到 ,获得积分10
38秒前
39秒前
超帅傲白发布了新的文献求助10
39秒前
hmhu完成签到,获得积分10
41秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146916
求助须知:如何正确求助?哪些是违规求助? 2798176
关于积分的说明 7826854
捐赠科研通 2454756
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565