Traffic flow parameter estimation for complex environments based on improved YOLOv8

估计 计算机科学 流量(数学) 数学 工程类 系统工程 几何学
作者
Wenhuan Ai,Jingming Zeng,Zhengqing Lei,Danyang Li
标识
DOI:10.1177/09544070241287582
摘要

Estimation of traffic flow parameters based on computer vision is still a very popular challenge. In particular, the detection problems such as occlusion, small targets, luminance variations, and lighting jitter, etc., are caused by dense traffic scenes and complex weather conditions. Previous studies about detecting and tracking methods focused on daytime and nighttime or single weather condition, but the performance of this model will decline dramatically due to complex conditions. In this paper, a framework for estimating traffic flow parameters in complex environments is presented, in which Ghost-YOLOv8 vehicle detection model is proposed. GhostConv is used to replace part of Conv and a new C2fGhost module is designed to replace part of C2f, reducing the number of parameters and improving the detection performance of the model; The global attention mechanism module is added to the neck network, which strengthens the semantic and location information in the features and improves the model’s ability of feature fusion; In view of the loss of semantic information caused by different scales in detecting small targets, a small target detection layer is added to enhance a combination of deep and shallow semantic information; The GIoU bounding loss function is used instead of the original loss function, which improves the performance of the network’s bounding box regression. Then, combining DeepSORT tracking algorithm and virtual line counting method, the proposed framework estimates traffic flow parameters, including volume, speed, and density in complex environments. The experimental results show that compared with the original model in the UA-DETRAC dataset, the improved YOLOv8 model’s the accuracy is increased by 1.4%, and the parameter number and model size are reduced by 0.229G and 0.2MB respectively. In addition, the framework has good robustness, reaching 97.56% accuracy when estimating average traffic flow parameters. It is sufficient to overcome complex weather conditions and effectively help control traffic for intelligent transportation systems and traffic management to provide good data support. In conclusion, it shows that the model can reduce the number and size of model parameters and improve the detection precision as well as meeting the requirements of edge computing devices and having better real-time performance, so it has practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
palexander完成签到,获得积分10
刚刚
Akim应助皮不起来的国国采纳,获得10
1秒前
科研通AI2S应助海孩子采纳,获得10
1秒前
Vivian发布了新的文献求助10
2秒前
开心的寄灵完成签到 ,获得积分10
3秒前
晚棠发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
8秒前
surain发布了新的文献求助30
8秒前
万能图书馆应助1111采纳,获得10
9秒前
万能图书馆应助专注人生采纳,获得10
9秒前
薛清棵完成签到 ,获得积分10
9秒前
小蛇玩完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
carlitos发布了新的文献求助10
12秒前
PWG完成签到,获得积分10
12秒前
乐枳发布了新的文献求助10
12秒前
12秒前
隐形曼青应助独特靖巧采纳,获得10
13秒前
慕青应助典雅的苗条采纳,获得10
15秒前
17秒前
我的miemie应助杨h采纳,获得20
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
z21完成签到,获得积分10
18秒前
超帅的访云完成签到,获得积分10
18秒前
19秒前
20秒前
22秒前
田忌赛马发布了新的文献求助10
23秒前
小二郎应助Vivian采纳,获得10
23秒前
大傻春完成签到 ,获得积分10
24秒前
孙朱珠发布了新的文献求助50
25秒前
独特靖巧发布了新的文献求助10
25秒前
归尘发布了新的文献求助10
29秒前
TAZIA发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954414
求助须知:如何正确求助?哪些是违规求助? 3500373
关于积分的说明 11099295
捐赠科研通 3230866
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801689