特征选择
随机森林
启发式
人工智能
接收机工作特性
聚类分析
均方误差
特征(语言学)
计算机科学
数学
机器学习
模式识别(心理学)
统计
数学优化
语言学
哲学
作者
Chunyan Duan,Qiantuo Liu,Jiajie Wang,Qianqian Tong,Fangyun Bai,Jie Han,Shouyi Wang,Daniel S. Hippe,Jing Zeng,Stephen R. Bowen
标识
DOI:10.1088/1361-6560/ad6118
摘要
Vital rules learned from fluorodeoxyglucose positron emission tomography (FDG-PET) radiomics of tumor subregional response can provide clinical decision support for precise treatment adaptation. We combined a rule-based machine learning (ML) model (RuleFit) with a heuristic algorithm (gray wolf optimizer, GWO) for mid-chemoradiation FDG-PET response prediction in patients with locally advanced non-small cell lung cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI