Physics-informed neural networks (P INNs): application categories, trends and impact

人工神经网络 计算机科学 统计物理学 物理 人工智能
作者
Mohammad Ghalambaz,Mikhail А. Sheremet,Mohammed Arshad Khan,Zehba Raizah,Jana Shafi
出处
期刊:International Journal of Numerical Methods for Heat & Fluid Flow [Emerald (MCB UP)]
卷期号:34 (8): 3131-3165 被引量:1
标识
DOI:10.1108/hff-09-2023-0568
摘要

Purpose This study aims to explore the evolving field of physics-informed neural networks (PINNs) through an analysis of 996 records retrieved from the Web of Science (WoS) database from 2019 to 2022. Design/methodology/approach WoS database was analyzed for PINNs using an inhouse python code. The author’s collaborations, most contributing institutes, countries and journals were identified. The trends and application categories were also analyzed. Findings The papers were classified into seven key domains: Fluid Dynamics and computational fluid dynamics (CFD); Mechanics and Material Science; Electromagnetism and Wave Propagation; Biomedical Engineering and Biophysics; Quantum Mechanics and Physics; Renewable Energy and Power Systems; and Astrophysics and Cosmology. Fluid Dynamics and CFD emerged as the primary focus, accounting for 69.3% of total publications and witnessing exponential growth from 22 papers in 2019 to 366 in 2022. Mechanics and Material Science followed, with an impressive growth trajectory from 3 to 65 papers within the same period. The study also underscored the rising interest in PINNs across diverse fields such as Biomedical Engineering and Biophysics, and Renewable Energy and Power Systems. Furthermore, the focus of the most active countries within each application category was examined, revealing, for instance, the USA’s significant contribution to Fluid Dynamics and CFD with 319 papers and to Mechanics and Material Science with 66 papers. Originality/value This analysis illuminates the rapidly expanding role of PINNs in tackling complex scientific problems and highlights its potential for future research across diverse domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微风完成签到,获得积分10
2秒前
3秒前
小雪666完成签到,获得积分10
3秒前
李健的小迷弟应助zqq采纳,获得10
3秒前
5秒前
5秒前
无敌反派大美人应助renshiq采纳,获得10
7秒前
旧梦发布了新的文献求助10
9秒前
方断秋发布了新的文献求助10
9秒前
9秒前
10秒前
金平卢仙发布了新的文献求助10
11秒前
1111111111111发布了新的文献求助10
13秒前
兴奋的白桃完成签到,获得积分20
14秒前
15秒前
15秒前
15秒前
简单驳发布了新的文献求助10
15秒前
16秒前
FashionBoy应助wangxiaoqing采纳,获得10
18秒前
zqq发布了新的文献求助10
18秒前
19秒前
郭泓嵩完成签到,获得积分10
20秒前
miemie发布了新的文献求助10
21秒前
安有才发布了新的文献求助10
22秒前
liunianru完成签到,获得积分10
22秒前
Sucrapipple发布了新的文献求助10
23秒前
里里发布了新的文献求助10
24秒前
26秒前
CipherSage应助简单枫采纳,获得10
27秒前
28秒前
安有才完成签到,获得积分10
29秒前
Owen应助绳网用户17117496采纳,获得10
29秒前
30秒前
wangxiaoqing完成签到,获得积分10
30秒前
Owen应助luoluo采纳,获得10
32秒前
32秒前
郭子朋发布了新的文献求助10
33秒前
来活发布了新的文献求助10
35秒前
里里完成签到,获得积分10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353002
求助须知:如何正确求助?哪些是违规求助? 2977782
关于积分的说明 8682092
捐赠科研通 2658911
什么是DOI,文献DOI怎么找? 1456009
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884