Optimal allocation and route design for station-based drone inspection of large-scale facilities

无人机 列生成 数学优化 拉格朗日松弛 计算机科学 整数规划 掉期(金融) 本德分解 设施选址问题 可靠性工程 工程类 数学 遗传学 生物 财务 经济
作者
Lei Cai,Jiliu Li,Kai Wang,Zhixing Luo,Hu Qin
出处
期刊:Omega [Elsevier]
卷期号:130: 103172-103172
标识
DOI:10.1016/j.omega.2024.103172
摘要

The utilization of drones to conduct inspections on industrial electricity facilities, including large-sized wind turbines and power transmission towers, has recently received significant attention, mainly due to its potential to enhance inspection efficiency and save maintenance costs. Motivated by the advantages of drones for facility inspection, we present a novel station-based drone inspection problem (SDIP) for large-scale facilities. The objective of SDIP is to determine the locations of multiple homogeneous automatic battery swap stations (ABSSs) equipped with drones, assign facility inspection tasks to the ABSSs with operation duration constraints, and design drone inspection routes with battery capacity constraints, such that minimize the sum of fixed ABSS costs and drone travel costs. The SDIP can be regarded as a variant of the location-routing problem, which is NP-hard and difficult to solve optimally. To obtain the optimal solution of SDIP efficiently, we firstly formulate this problem into an arc based formulation and a route based formulation, and then develop a logic-based Benders decomposition (LBBD) algorithm to solve it. The SDIP is decomposed into a master problem (MP) and a set of subproblems (SPs). The MP is solved by a branch-and-cut (BC) procedure. Once a feasible integer solution is found, the linear relaxation of SPs are solved by a stabilized column generation to generate Benders cuts. If the cost of all the SPs' optimal LP solutions plus the cost of the MP's solution is less that current best cost, the SPs are exactly solved by a Branch-and-Price (BP) algorithm to generate the logic cuts. The numerical results on five scales of randomly generated instances validate the effectiveness of the LBBD algorithm. Specifically, the LBBD can solve all small- and middle-sized instances, and seven out of ten large-sized instances in 1000 s. Furthermore, we conduct a sensitivity analysis by varying the attributes of ABSSs and drones, and provide valuable managerial insights for large-scale facility inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘欢发布了新的文献求助10
1秒前
1秒前
明亮访烟完成签到 ,获得积分10
2秒前
呆萌的羊完成签到 ,获得积分10
2秒前
Luna发布了新的文献求助10
3秒前
Mr杜发布了新的文献求助10
3秒前
4秒前
4秒前
扶风完成签到,获得积分10
5秒前
6秒前
hoojack发布了新的文献求助10
6秒前
哎呀我去发布了新的文献求助10
6秒前
7秒前
允初完成签到,获得积分20
8秒前
8秒前
amg发布了新的文献求助10
8秒前
mmmmm发布了新的文献求助10
9秒前
9秒前
wjy发布了新的文献求助10
10秒前
子车茗应助123456采纳,获得10
10秒前
愉快的小鸽子完成签到,获得积分10
11秒前
Luna完成签到,获得积分10
11秒前
哭唧唧完成签到,获得积分10
11秒前
12秒前
景自端发布了新的文献求助10
12秒前
Singularity应助恩拜尔生物采纳,获得10
13秒前
Singularity应助恩拜尔生物采纳,获得10
13秒前
Owen应助沉默的西牛采纳,获得10
13秒前
善学以致用应助hoojack采纳,获得10
13秒前
算命的完成签到,获得积分10
13秒前
13秒前
鲜于夜白完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
今天看文献了吗完成签到,获得积分10
15秒前
15秒前
16秒前
个性的紫菜应助奎奎采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145621
求助须知:如何正确求助?哪些是违规求助? 2797097
关于积分的说明 7822848
捐赠科研通 2453435
什么是DOI,文献DOI怎么找? 1305652
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601469