Reinforcement learning for versatile, dynamic, and robust bipedal locomotion control

机器人 稳健性(进化) 强化学习 计算机科学 机器人运动 机器人学 人工智能 控制工程 控制理论(社会学) 机器人控制 工程类 控制(管理) 移动机器人 生物化学 化学 基因
作者
Zhongyu Li,Xue Bin Peng,Pieter Abbeel,Sergey Levine,Glen Berseth,Koushil Sreenath
出处
期刊:The International Journal of Robotics Research [SAGE]
被引量:7
标识
DOI:10.1177/02783649241285161
摘要

This paper presents a comprehensive study on using deep reinforcement learning (RL) to create dynamic locomotion controllers for bipedal robots. Going beyond focusing on a single locomotion skill, we develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing. Our RL-based controller incorporates a novel dual-history architecture, utilizing both a long-term and short-term input/output (I/O) history of the robot. This control architecture, when trained through the proposed end-to-end RL approach, consistently outperforms other methods across a diverse range of skills in both simulation and the real world. The study also delves into the adaptivity and robustness introduced by the proposed RL system in developing locomotion controllers. We demonstrate that the proposed architecture can adapt to both time-invariant dynamics shifts and time-variant changes, such as contact events, by effectively using the robot’s I/O history. Additionally, we identify task randomization as another key source of robustness, fostering better task generalization and compliance to disturbances. The resulting control policies can be successfully deployed on Cassie, a torque-controlled human-sized bipedal robot. This work pushes the limits of agility for bipedal robots through extensive real-world experiments. We demonstrate a diverse range of locomotion skills, including: robust standing, versatile walking, fast running with a demonstration of a 400-meter dash, and a diverse set of jumping skills, such as standing long jumps and high jumps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dzdzn3完成签到 ,获得积分20
刚刚
zjh发布了新的文献求助10
刚刚
yu_z完成签到 ,获得积分10
刚刚
上官若男应助韭菜盒子采纳,获得10
刚刚
细腻晓露完成签到,获得积分10
刚刚
大吴克发布了新的文献求助10
1秒前
饱满的煎饼完成签到,获得积分10
1秒前
dzdzn3关注了科研通微信公众号
1秒前
KING完成签到,获得积分10
2秒前
seventonight2完成签到,获得积分10
2秒前
顾矜应助xwc采纳,获得10
2秒前
Relax发布了新的文献求助10
2秒前
微笑的语梦完成签到 ,获得积分10
3秒前
落寞的紫山完成签到,获得积分10
3秒前
杨大大发布了新的文献求助10
3秒前
BOSSJING完成签到,获得积分10
3秒前
Jasper应助搞怪的人龙采纳,获得10
4秒前
4秒前
benj完成签到,获得积分10
4秒前
4秒前
zoko发布了新的文献求助10
4秒前
周老八发布了新的文献求助10
4秒前
4秒前
小杨爱吃羊完成签到 ,获得积分10
4秒前
lszhw完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
美好乌龟完成签到 ,获得积分10
5秒前
5秒前
烟雨行舟完成签到,获得积分10
6秒前
6秒前
6秒前
搜集达人应助刘星星采纳,获得30
7秒前
赘婿应助顺利水杯采纳,获得10
7秒前
7秒前
明亮的溪灵完成签到,获得积分10
7秒前
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740