Reinforcement learning for versatile, dynamic, and robust bipedal locomotion control

机器人 稳健性(进化) 强化学习 计算机科学 机器人运动 机器人学 人工智能 控制工程 控制理论(社会学) 机器人控制 工程类 控制(管理) 移动机器人 生物化学 化学 基因
作者
Zhongyu Li,Xue Bin Peng,Pieter Abbeel,Sergey Levine,Glen Berseth,Koushil Sreenath
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:44 (5): 840-888 被引量:55
标识
DOI:10.1177/02783649241285161
摘要

This paper presents a comprehensive study on using deep reinforcement learning (RL) to create dynamic locomotion controllers for bipedal robots. Going beyond focusing on a single locomotion skill, we develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing. Our RL-based controller incorporates a novel dual-history architecture, utilizing both a long-term and short-term input/output (I/O) history of the robot. This control architecture, when trained through the proposed end-to-end RL approach, consistently outperforms other methods across a diverse range of skills in both simulation and the real world. The study also delves into the adaptivity and robustness introduced by the proposed RL system in developing locomotion controllers. We demonstrate that the proposed architecture can adapt to both time-invariant dynamics shifts and time-variant changes, such as contact events, by effectively using the robot’s I/O history. Additionally, we identify task randomization as another key source of robustness, fostering better task generalization and compliance to disturbances. The resulting control policies can be successfully deployed on Cassie, a torque-controlled human-sized bipedal robot. This work pushes the limits of agility for bipedal robots through extensive real-world experiments. We demonstrate a diverse range of locomotion skills, including: robust standing, versatile walking, fast running with a demonstration of a 400-meter dash, and a diverse set of jumping skills, such as standing long jumps and high jumps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助小马采纳,获得10
刚刚
刚刚
现代的秋完成签到,获得积分10
刚刚
zhaoxi完成签到,获得积分10
刚刚
英吉利25发布了新的文献求助10
1秒前
水月完成签到,获得积分10
1秒前
Gurlstrian完成签到,获得积分10
1秒前
Migrol完成签到,获得积分10
1秒前
悄悄完成签到 ,获得积分10
1秒前
miao完成签到,获得积分10
2秒前
研友_VZG7GZ应助花痴的谷雪采纳,获得10
2秒前
sclai完成签到,获得积分10
2秒前
苹果河马完成签到,获得积分10
2秒前
哈哈发布了新的文献求助10
2秒前
江中发布了新的文献求助10
2秒前
Orange应助Shawn_张晨采纳,获得20
2秒前
幽默鱼完成签到,获得积分10
2秒前
小鱼完成签到,获得积分10
3秒前
无花果应助希特勒采纳,获得10
3秒前
3秒前
3秒前
NFC完成签到 ,获得积分10
3秒前
滴滴滴完成签到,获得积分10
3秒前
LC2228完成签到,获得积分10
3秒前
旅途发布了新的文献求助10
3秒前
OIC完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
kkkkkkk完成签到,获得积分10
4秒前
活力大厦B发布了新的文献求助50
5秒前
ZephyrZY完成签到,获得积分10
5秒前
fanlin完成签到,获得积分0
5秒前
半农发布了新的文献求助50
5秒前
健康的小鸽子完成签到 ,获得积分10
5秒前
Egoist完成签到,获得积分0
6秒前
啦啦啦完成签到,获得积分10
6秒前
6秒前
马嘉祺发布了新的文献求助10
6秒前
瑞仔完成签到,获得积分10
6秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585217
求助须知:如何正确求助?哪些是违规求助? 4669042
关于积分的说明 14774554
捐赠科研通 4617220
什么是DOI,文献DOI怎么找? 2530423
邀请新用户注册赠送积分活动 1499182
关于科研通互助平台的介绍 1467659