透明质酸
伤口愈合
多酚
纳米-
化学
生物医学工程
生物化学
材料科学
外科
医学
抗氧化剂
解剖
复合材料
作者
Chenguang Liu,Ronger Ai,Bi-zhi Liu,Li He
标识
DOI:10.1016/j.ijbiomac.2024.136856
摘要
Diabetic wound healing remains a significant clinical challenge for the complex wound microenvironment characterized by oxidative stress, inflammation, and bacterial infection. To address these challenges, we present a novel hydrogel incorporates tea polyphenol-stabilized silver nanoparticles (TP@Ag NPs) into a dynamic hyaluronic acid-phenylboronic acid network crosslinked via borate ester bonds. This design leverages the inherent biocompatibility and biodegradability of hyaluronic acid alongside the antioxidant, anti-inflammatory, and antibacterial properties of tea polyphenols and silver nanoparticles. The HP-TP@Ag hydrogel exhibited glucose-responsive degradation and TP@Ag NPs release, enabling targeted delivery within the diabetic wound microenvironment. In vitro assays demonstrated the hydrogel's potent antioxidant activity, effectively scavenging ROS and protecting both HaCaT and RAW264.7 cells from oxidative stress. Furthermore, the HP-TP@Ag hydrogel significantly suppressed the production of pro-inflammatory cytokines and exhibited robust antibacterial activity against both E. coli and S. aureus. In vivo studies using a diabetic mouse model revealed accelerated wound closure, reduced inflammation, enhanced collagen deposition, and promoted angiogenesis and tissue remodeling in HP-TP@Ag hydrogel-treated wounds. These findings highlight the promise of HP-TP@Ag hydrogel as an advanced wound dressing for effective diabetic wound management, offering a synergistic approach to overcome the multifaceted challenges associated with this complex condition.
科研通智能强力驱动
Strongly Powered by AbleSci AI