MT-HTI: a novel approach based on metapath2Vec and transformer for herb-target interaction prediction

计算机科学 机器学习 人工智能 预测建模 变压器 图形 深度学习 理论计算机科学 工程类 电气工程 电压
作者
Lianzhong Zhang,Meishun Li,Xiumin Shi,Lu Wang
标识
DOI:10.1117/12.3044440
摘要

In the context of the ongoing progress of modern technology, research into Traditional Chinese Medicine (TCM) is being deepened. Advances in modern pharmacology and molecular biology are progressively uncovering the mechanisms of action, efficacy principles, and predictive effects of the components of TCM. Faced with the complexity of TCM components and the intricacies of their mechanisms of action, the traditional compound-target relationship model has limitations in its predictive capabilities. At present, constructing complex heterogeneous graph networks and applying machine learning or deep learning for prediction have become a trend. This paper introduces a novel prediction method based on the efficacy-herb-target-pathway network, with the innovation of incorporating the Metapath2vec. This algorithm trains the model on a heterogeneous graph using manually defined metapaths, capturing the complex relationships within the network more effectively than the traditional node2vec algorithm. In addition, we have developed a custom prediction module based on the transformer architecture, which significantly enhances the accuracy of the predictions. Our method has demonstrated outstanding performance in terms of AUC_ROC, AUC_PR, and F1 evaluation metrics, as evidenced by testing on the collected dataset. This approach not only enhances the accuracy of predictions but also offers a new perspective and tool for predicting TCM targets, thereby adding more practical value to the development of traditional Chinese medicine. MT-HTI is freely available at https://github.comShiLab-GitHub/MT-HTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归海紫翠发布了新的文献求助30
1秒前
Chen完成签到,获得积分10
1秒前
易伊澤发布了新的文献求助10
1秒前
徐徐发布了新的文献求助10
1秒前
1秒前
科研小民工应助laihama采纳,获得30
1秒前
xdf发布了新的文献求助10
2秒前
动听导师发布了新的文献求助10
2秒前
2秒前
莫之白完成签到,获得积分10
2秒前
阳光莲小蓬完成签到,获得积分20
3秒前
芒果完成签到,获得积分10
3秒前
请叫我风吹麦浪应助九川采纳,获得10
4秒前
4秒前
yanyan完成签到,获得积分10
4秒前
Raine完成签到,获得积分10
4秒前
CCL应助啦某某采纳,获得20
4秒前
喵叽完成签到,获得积分10
4秒前
5秒前
大方的小海豚完成签到,获得积分10
5秒前
lanxixi完成签到,获得积分20
5秒前
5秒前
李小汁完成签到 ,获得积分10
5秒前
zkc关闭了zkc文献求助
5秒前
6秒前
6秒前
6秒前
7秒前
柏小霜完成签到 ,获得积分10
8秒前
MJQ发布了新的文献求助30
8秒前
8秒前
励志梦完成签到,获得积分10
9秒前
领导范儿应助su采纳,获得10
10秒前
Ll发布了新的文献求助10
10秒前
pi发布了新的文献求助10
10秒前
尔晚完成签到,获得积分10
10秒前
长情绿凝发布了新的文献求助10
10秒前
完美世界应助Huaiman采纳,获得10
10秒前
JamesPei应助zhaomr采纳,获得10
10秒前
调研昵称发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762