Agent-based modelling of polarized news and opinion dynamics in social networks: a guidance-oriented approach

计算机科学 动力学(音乐) 情绪分析 社会动力 数据科学 人工智能 社会学 教育学
作者
Shan Liu,Haoyu Wen
出处
期刊:Journal of Complex Networks [Oxford University Press]
卷期号:12 (4) 被引量:1
标识
DOI:10.1093/comnet/cnae028
摘要

Abstract In the contemporary social network landscape, opinion polarization has emerged as a prominent challenge, sparking concerns about the effective guidance of news sentiment and mitigation of opposing opinions. This is particularly pertinent in the intricate web of social networks, where complexity reigns supreme. Addressing this pivotal issue, this article introduces a news opinion guidance approach grounded in motif recognition. To accurately mirror real-world social networks, we have crafted an agent-based model that simulates polarized news propagation. This model encompasses diverse media agents and user agents, meticulously replicating the news dissemination process within the network. In our quest to unveil the underlying structures of social networks, we have enhanced the Augmented Multiresolution Network approach, incorporating multi-dimensional node attributes for more nuanced clustering and network mapping. This refinement enables us to pinpoint potential motif regions with greater precision. Leveraging these insights, we introduce a triangular motif-based opinion guidance strategy aimed at shaping opinion distribution by bolstering the influence of nodes within these motifs. Once the pertinent motifs are identified, we undertake simulation experiments that reveal the remarkable efficacy of our motif recognition-driven guidance strategy. Notably, it reduces opinion polarization by a substantial 74% compared to scenarios without guidance strategies. This research offers a fresh perspective on crafting personalized and targeted news sentiment guidance strategies. It presents a versatile and potent computational framework for understanding and managing polarization phenomena in social networks, carrying profound theoretical and practical ramifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oasissmz完成签到 ,获得积分10
刚刚
KuchA完成签到,获得积分10
1秒前
gwh68964402gwh完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
执着怀蝶完成签到,获得积分10
2秒前
2秒前
期刊完成签到,获得积分10
2秒前
欢呼又夏完成签到,获得积分10
2秒前
努力的小南瓜头完成签到,获得积分10
2秒前
yu完成签到,获得积分10
2秒前
疯狂的虔完成签到,获得积分10
2秒前
111完成签到,获得积分10
3秒前
MADKAI发布了新的文献求助10
3秒前
evvj完成签到,获得积分10
4秒前
大方念云完成签到,获得积分10
4秒前
NPC完成签到,获得积分10
4秒前
可爱的函函应助夕阳昏红采纳,获得10
4秒前
孙微祥完成签到,获得积分10
5秒前
万能图书馆应助杨桃采纳,获得10
5秒前
shimly0101xx发布了新的文献求助10
5秒前
zky0216发布了新的文献求助10
6秒前
6秒前
无花果应助cc采纳,获得10
6秒前
OK佛发布了新的文献求助10
7秒前
Almo完成签到,获得积分10
7秒前
cdercder应助酷酷的雪碧采纳,获得10
7秒前
练习者发布了新的文献求助10
7秒前
研友_8QxN1Z完成签到,获得积分10
8秒前
慕青应助WCheng采纳,获得10
8秒前
大唐发布了新的文献求助10
8秒前
Cooper完成签到,获得积分10
8秒前
安详的断缘完成签到,获得积分10
9秒前
踏实无敌应助快乐凌寒采纳,获得30
9秒前
Negan完成签到,获得积分10
9秒前
飞飞飞飞飞完成签到,获得积分10
9秒前
10秒前
10秒前
Kilig完成签到,获得积分20
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746550
求助须知:如何正确求助?哪些是违规求助? 3289414
关于积分的说明 10064441
捐赠科研通 3005751
什么是DOI,文献DOI怎么找? 1650393
邀请新用户注册赠送积分活动 785863
科研通“疑难数据库(出版商)”最低求助积分说明 751335