铱
析氧
质子化
催化作用
材料科学
电化学
氧化物
溶解
金红石
无定形固体
电催化剂
化学工程
价(化学)
无机化学
电极
化学
物理化学
结晶学
有机化学
离子
冶金
工程类
作者
Jun Qi,Huiyan Zeng,Long Gu,Zhongfei Liu,Yanquan Zeng,Enna Hong,Yuecheng Lai,Tianhui Liu,Chunzhen Yang
标识
DOI:10.1021/acsami.2c20131
摘要
Even the most stable Ir-based oxides inevitably encounter a severe degradation problem during the oxygen evolution reaction (OER) in acid, resulting in quick formation of amorphous IrOx layers on the catalyst surface. Unfortunately, there is still a lack of fundamental understanding of such hydrous IrOx layers, including the atomic arrangement, key active structure, compositions, chemical stability, and so on. In this work, we demonstrate an electrochemical strategy to prepare two types of protonated iridium oxides with well-defined crystalline structures: one possesses a 2D layered structure (denoted as α-HxIrO3) and the other consists of 3D interconnected polymorphs (denoted as β-HxIrO3). Both protonated iridium oxides demonstrate superior electrochemical stabilities with 6 times suppressed Ir dissolution comparing to the initial Li2IrO3 and rutile IrO2. It is hypothesized that the enriched protons and fast diffusions in these two protonated HxIrO3 crystal oxides may promote surface structural stability by suppressing the formation of high-valence Ir species at the solid–liquid interfaces during OER. Overall, the results of this work shed light on the role of proton dynamics toward the OER processes on the catalyst surface in acid media.
科研通智能强力驱动
Strongly Powered by AbleSci AI