Multi-agent deep reinforcement learning based decision support model for resilient community post-hazard recovery

相互依存 强化学习 计算机科学 调度(生产过程) 危害 人工神经网络 决策支持系统 弹性(材料科学) 运筹学 人工智能 工程类 运营管理 化学 物理 有机化学 政治学 法学 热力学
作者
Sen Yang,Yi Zhang,Xinzheng Lu,Wei Guo,Huiquan Miao
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:242: 109754-109754 被引量:6
标识
DOI:10.1016/j.ress.2023.109754
摘要

After a city-scale natural hazard, policymakers should plan sound decisions on the repair sequence to ensure the resilient recovery of the community, which consists of interdependent infrastructures. Stochastic scheduling for repairing interdependent infrastructure systems is a difficult control problem with huge decision spaces. This study proposes a novel decision support model to determine the optimal restoration policies for the purpose of maximizing disaster resilience. A simulation environment is first developed, consisting of hazard intensity assessment, components damage evaluation, system recovery simulation, and resilience quantification. The graph theory is utilized to represent the interdependencies among different systems, and the heterogeneous graph neural network is integrated into this framework to extract the topology and interdependency information of the whole community. The optimal repair policies approximated by neural networks are trained by a multi-agent deep reinforcement learning algorithm, considering uncertainties of the restoration process. The superiority and efficiency of the proposed method are demonstrated through a case study of the Tsinghua University campus, where different decision-making objectives are considered. The results show that the recovery trajectories determined by the proposed model have the highest performance compared to conventional methods. Besides, the proposed methodology based on transfer learning can achieve high computational efficiency for new damage scenarios. This model is promising to be a high-performance, robust decision-support tool for post-hazard repairing decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dwz完成签到,获得积分20
3秒前
活泼的乐枫完成签到,获得积分10
4秒前
5秒前
NexusExplorer应助立军采纳,获得50
6秒前
啦啦啦完成签到,获得积分10
7秒前
让我乔乔发布了新的文献求助10
9秒前
ygr应助科研通管家采纳,获得50
10秒前
不配.应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
wanci应助犹豫山河采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得50
10秒前
橙子味的邱憨憨完成签到 ,获得积分10
12秒前
lolo发布了新的文献求助10
15秒前
congcong完成签到 ,获得积分10
16秒前
18秒前
yujianjin完成签到,获得积分10
19秒前
jiandan关注了科研通微信公众号
20秒前
22秒前
犹豫山河发布了新的文献求助10
23秒前
清爽的天晴完成签到,获得积分10
23秒前
好了完成签到 ,获得积分20
24秒前
陶醉的翠霜完成签到 ,获得积分10
25秒前
西西完成签到,获得积分10
25秒前
完美世界应助Rainbow采纳,获得10
25秒前
25秒前
meetrain发布了新的文献求助10
25秒前
烟花应助emergency采纳,获得10
25秒前
27秒前
秋秋完成签到,获得积分10
27秒前
28秒前
10711发布了新的文献求助10
30秒前
Lucas应助犹豫山河采纳,获得10
31秒前
坚定的海露完成签到,获得积分10
31秒前
一条咸鱼发布了新的文献求助10
32秒前
beluga发布了新的文献求助10
32秒前
33秒前
朱文琛完成签到,获得积分10
33秒前
无花果应助十二月的尾巴采纳,获得10
33秒前
33秒前
共享精神应助nano采纳,获得10
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151938
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852661
捐赠科研通 2460630
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760