Multi-agent deep reinforcement learning based decision support model for resilient community post-hazard recovery

相互依存 强化学习 计算机科学 调度(生产过程) 危害 人工神经网络 决策支持系统 弹性(材料科学) 运筹学 人工智能 工程类 运营管理 化学 物理 有机化学 政治学 法学 热力学
作者
Sen Yang,Yi Zhang,Xinzheng Lu,Wei Guo,Huiquan Miao
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:242: 109754-109754 被引量:23
标识
DOI:10.1016/j.ress.2023.109754
摘要

After a city-scale natural hazard, policymakers should plan sound decisions on the repair sequence to ensure the resilient recovery of the community, which consists of interdependent infrastructures. Stochastic scheduling for repairing interdependent infrastructure systems is a difficult control problem with huge decision spaces. This study proposes a novel decision support model to determine the optimal restoration policies for the purpose of maximizing disaster resilience. A simulation environment is first developed, consisting of hazard intensity assessment, components damage evaluation, system recovery simulation, and resilience quantification. The graph theory is utilized to represent the interdependencies among different systems, and the heterogeneous graph neural network is integrated into this framework to extract the topology and interdependency information of the whole community. The optimal repair policies approximated by neural networks are trained by a multi-agent deep reinforcement learning algorithm, considering uncertainties of the restoration process. The superiority and efficiency of the proposed method are demonstrated through a case study of the Tsinghua University campus, where different decision-making objectives are considered. The results show that the recovery trajectories determined by the proposed model have the highest performance compared to conventional methods. Besides, the proposed methodology based on transfer learning can achieve high computational efficiency for new damage scenarios. This model is promising to be a high-performance, robust decision-support tool for post-hazard repairing decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq发布了新的文献求助10
刚刚
深情安青应助糊涂的孤丝采纳,获得20
1秒前
1秒前
彭于晏应助忆枫采纳,获得10
1秒前
科研通AI5应助Carly采纳,获得30
2秒前
2秒前
123完成签到,获得积分10
2秒前
2秒前
momo完成签到,获得积分10
2秒前
szmsnail完成签到,获得积分10
3秒前
lwj完成签到,获得积分10
3秒前
自由的信仰完成签到,获得积分10
3秒前
YB完成签到,获得积分10
5秒前
淡定的健柏完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
朴实以松完成签到,获得积分10
7秒前
典雅的静完成签到,获得积分10
7秒前
7秒前
shuang完成签到,获得积分10
8秒前
何晶晶完成签到 ,获得积分10
10秒前
个性的雪旋完成签到 ,获得积分10
10秒前
香蕉觅云应助可靠的寒风采纳,获得10
11秒前
笑点低的小天鹅完成签到,获得积分10
11秒前
ChaseY完成签到,获得积分10
11秒前
半颗糖完成签到,获得积分10
11秒前
阿白完成签到 ,获得积分10
11秒前
11秒前
土豆菜卷完成签到,获得积分10
12秒前
鸣笛应助调皮平松采纳,获得10
12秒前
在水一方应助无语的安卉采纳,获得10
13秒前
faiting完成签到,获得积分10
13秒前
14秒前
15秒前
今昔完成签到,获得积分10
15秒前
尚白swqd发布了新的文献求助10
15秒前
土豆菜卷发布了新的文献求助30
15秒前
爆米花应助木木采纳,获得10
16秒前
17秒前
含蓄世界完成签到,获得积分10
17秒前
18秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598273
求助须知:如何正确求助?哪些是违规求助? 4009452
关于积分的说明 12411277
捐赠科研通 3688841
什么是DOI,文献DOI怎么找? 2033499
邀请新用户注册赠送积分活动 1066749
科研通“疑难数据库(出版商)”最低求助积分说明 951856