Multi-agent deep reinforcement learning based decision support model for resilient community post-hazard recovery

相互依存 强化学习 计算机科学 调度(生产过程) 危害 人工神经网络 决策支持系统 弹性(材料科学) 运筹学 人工智能 工程类 运营管理 化学 物理 有机化学 政治学 法学 热力学
作者
Sen Yang,Yi Zhang,Xinzheng Lu,Wei Guo,Huiquan Miao
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:242: 109754-109754 被引量:6
标识
DOI:10.1016/j.ress.2023.109754
摘要

After a city-scale natural hazard, policymakers should plan sound decisions on the repair sequence to ensure the resilient recovery of the community, which consists of interdependent infrastructures. Stochastic scheduling for repairing interdependent infrastructure systems is a difficult control problem with huge decision spaces. This study proposes a novel decision support model to determine the optimal restoration policies for the purpose of maximizing disaster resilience. A simulation environment is first developed, consisting of hazard intensity assessment, components damage evaluation, system recovery simulation, and resilience quantification. The graph theory is utilized to represent the interdependencies among different systems, and the heterogeneous graph neural network is integrated into this framework to extract the topology and interdependency information of the whole community. The optimal repair policies approximated by neural networks are trained by a multi-agent deep reinforcement learning algorithm, considering uncertainties of the restoration process. The superiority and efficiency of the proposed method are demonstrated through a case study of the Tsinghua University campus, where different decision-making objectives are considered. The results show that the recovery trajectories determined by the proposed model have the highest performance compared to conventional methods. Besides, the proposed methodology based on transfer learning can achieve high computational efficiency for new damage scenarios. This model is promising to be a high-performance, robust decision-support tool for post-hazard repairing decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
游悠悠发布了新的文献求助10
刚刚
1秒前
1秒前
糖醋花孙米完成签到,获得积分10
1秒前
2秒前
max发布了新的文献求助10
3秒前
李健应助阿氏之光采纳,获得10
3秒前
NexusExplorer应助哈哈哈哈采纳,获得10
3秒前
4秒前
星辰大海应助xiao5424liu采纳,获得10
4秒前
11完成签到,获得积分20
4秒前
Green发布了新的文献求助10
5秒前
5秒前
5秒前
orixero应助赎罪采纳,获得10
6秒前
Owen应助梨理栗采纳,获得10
6秒前
7秒前
11发布了新的文献求助10
8秒前
zhangyu应助小yang采纳,获得10
9秒前
爆米花应助ChiLi采纳,获得10
9秒前
黄小北完成签到,获得积分10
9秒前
9秒前
小蘑菇应助单耳元采纳,获得10
9秒前
王皓完成签到,获得积分20
9秒前
烟花应助max采纳,获得10
10秒前
10秒前
Green完成签到,获得积分10
11秒前
11秒前
w_发布了新的文献求助10
12秒前
12秒前
xzy998发布了新的文献求助20
12秒前
12秒前
12秒前
深情安青应助xu采纳,获得10
13秒前
13秒前
smile完成签到,获得积分10
14秒前
JJ完成签到 ,获得积分10
14秒前
哈哈哈哈发布了新的文献求助10
14秒前
阿芙乐尔完成签到 ,获得积分10
14秒前
猕猴桃发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992393
求助须知:如何正确求助?哪些是违规求助? 3533397
关于积分的说明 11262186
捐赠科研通 3272927
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882792
科研通“疑难数据库(出版商)”最低求助积分说明 809474