CTransCNN: Combining transformer and CNN in multilabel medical image classification

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 串联(数学) 上下文图像分类 变压器 机器学习 特征(语言学) 图像(数学) 数学 物理 组合数学 电压 量子力学 语言学 哲学
作者
Xin Wu,Yue Feng,Hong Xu,Zhuosheng Lin,Tao Chen,Shengke Li,Shihan Qiu,Qichao Liu,Yuangang Ma,Shuangsheng Zhang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:281: 111030-111030 被引量:29
标识
DOI:10.1016/j.knosys.2023.111030
摘要

Multilabel image classification aims to assign images to multiple possible labels. In this task, each image may be associated with multiple labels, making it more challenging than the single-label classification problems. For instance, convolutional neural networks (CNNs) have not met the performance requirement in utilizing statistical dependencies between labels in this study. Additionally, data imbalance is a common problem in machine learning that needs to be considered for multilabel medical image classification. Furthermore, the concatenation of a CNN and a transformer suffers from the disadvantage of lacking direct interaction and information exchange between the two models. To address these issues, we propose a novel hybrid deep learning model called CTransCNN. This model comprises three main components in both the CNN and transformer branches: a multilabel multihead attention enhanced feature module (MMAEF), a multibranch residual module (MBR), and an information interaction module (IIM). The MMAEF enables the exploration of implicit correlations between labels, the MBR facilitates model optimization, and the IIM enhances feature transmission and increases nonlinearity between the two branches to help accomplish the multilabel medical image classification task. We evaluated our approach using publicly available datasets, namely the ChestX-ray11 and NIH ChestX-ray14, along with our self-constructed traditional Chinese medicine tongue dataset (TCMTD). Extensive multilabel image classification experiments were conducted comparing our approach with excellent methods. The experimental results demonstrate that the framework we have developed exhibits strong competitiveness compared to previous research. Its robust generalization ability makes it applicable to other medical multilabel image classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小饼干完成签到,获得积分10
刚刚
???完成签到,获得积分10
刚刚
ww完成签到,获得积分20
1秒前
共享精神应助邓少龙采纳,获得10
1秒前
orixero应助SAL采纳,获得10
2秒前
缪飞柏完成签到,获得积分10
2秒前
小蓝完成签到,获得积分10
2秒前
cmw完成签到,获得积分10
3秒前
无限的依波完成签到,获得积分20
3秒前
3秒前
Kuta完成签到,获得积分10
3秒前
整齐芷文完成签到,获得积分10
3秒前
4秒前
4秒前
garlic完成签到,获得积分10
5秒前
闪闪灯泡完成签到,获得积分10
6秒前
默默完成签到,获得积分10
6秒前
赘婿应助sam采纳,获得10
6秒前
6秒前
7秒前
小丹发布了新的文献求助10
7秒前
7秒前
内向采枫完成签到,获得积分20
8秒前
qiaorankongling完成签到,获得积分10
8秒前
lvbowen完成签到,获得积分10
8秒前
哈哈哈哈哈完成签到,获得积分10
8秒前
9秒前
空山新雨完成签到,获得积分10
9秒前
自由的荷包蛋完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
邓少龙完成签到,获得积分20
12秒前
啦啦啦完成签到,获得积分10
12秒前
神勇中道完成签到,获得积分10
12秒前
GGbond发布了新的文献求助10
12秒前
舒心的完成签到,获得积分10
13秒前
哈密哈密完成签到,获得积分10
13秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Measure Mean Linear Intercept 500
IZELTABART TAPATANSINE 500
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3721476
求助须知:如何正确求助?哪些是违规求助? 3267543
关于积分的说明 9948978
捐赠科研通 2981173
什么是DOI,文献DOI怎么找? 1635441
邀请新用户注册赠送积分活动 776393
科研通“疑难数据库(出版商)”最低求助积分说明 746285