亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ESICCC as a systematic computational framework for evaluation, selection, and integration of cell-cell communication inference methods

推论 计算机科学 水准点(测量) 计算生物学 生物 稳健性(进化) 数据挖掘 机器学习 生物信息学 人工智能 遗传学 大地测量学 基因 地理
作者
Jiaxin Luo,Minghua Deng,Xuegong Zhang,Sun X
出处
期刊:Genome Research [Cold Spring Harbor Laboratory]
卷期号:33 (10): 1788-1805 被引量:1
标识
DOI:10.1101/gr.278001.123
摘要

Cell-cell communication (CCC) is critical for determining cell fates and functions in multicellular organisms. With the advent of single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST), an increasing number of CCC inference methods have been developed. Nevertheless, a thorough comparison of their performances is yet to be conducted. To fill this gap, we developed a systematic benchmark framework called ESICCC to evaluate 18 ligand-receptor (LR) inference methods and five ligand/receptor-target inference methods using a total of 116 data sets, including 15 ST data sets, 15 sets of cell line perturbation data, two sets of cell type-specific expression/proteomics data, and 84 sets of sampled or unsampled scRNA-seq data. We evaluated and compared the agreement, accuracy, robustness, and usability of these methods. Regarding accuracy evaluation, RNAMagnet, CellChat, and scSeqComm emerge as the three best-performing methods for intercellular ligand-receptor inference based on scRNA-seq data, whereas stMLnet and HoloNet are the best methods for predicting ligand/receptor-target regulation using ST data. To facilitate the practical applications, we provide a decision-tree-style guideline for users to easily choose best tools for their specific research concerns in CCC inference, and develop an ensemble pipeline CCCbank that enables versatile combinations of methods and databases. Moreover, our comparative results also uncover several critical influential factors for CCC inference, such as prior interaction information, ligand-receptor scoring algorithm, intracellular signaling complexity, and spatial relationship, which may be considered in the future studies to advance the development of new methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老孟发布了新的文献求助10
5秒前
Milton_z完成签到 ,获得积分10
5秒前
风都翔太郎完成签到,获得积分10
5秒前
杳鸢应助十卄卅卌采纳,获得30
6秒前
张振宇完成签到 ,获得积分10
8秒前
yiseeya应助鳗鱼凡波采纳,获得10
10秒前
ezekiet完成签到 ,获得积分10
12秒前
13秒前
founder完成签到,获得积分10
14秒前
founder发布了新的文献求助20
17秒前
19秒前
从容芮应助xiangoak采纳,获得10
19秒前
任元元完成签到 ,获得积分10
20秒前
万能图书馆应助Tyler采纳,获得10
21秒前
Lorain完成签到,获得积分10
21秒前
自然的白竹完成签到,获得积分10
22秒前
26秒前
小马甲应助张颜采纳,获得10
29秒前
xin完成签到,获得积分10
36秒前
香蕉觅云应助鳗鱼凡波采纳,获得10
39秒前
风登楼发布了新的文献求助10
43秒前
HeP关闭了HeP文献求助
44秒前
47秒前
47秒前
trussie发布了新的文献求助10
48秒前
轻松戎发布了新的文献求助30
51秒前
异同发布了新的文献求助10
52秒前
ffffffflzx666完成签到,获得积分10
54秒前
风登楼完成签到,获得积分10
56秒前
田様应助123456采纳,获得10
57秒前
忧心的香水完成签到,获得积分10
1分钟前
1分钟前
trussie完成签到,获得积分10
1分钟前
1分钟前
汉堡包应助忧心的香水采纳,获得10
1分钟前
1分钟前
123456发布了新的文献求助10
1分钟前
chuchu7613发布了新的文献求助10
1分钟前
msk完成签到,获得积分10
1分钟前
dxwy完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294383
求助须知:如何正确求助?哪些是违规求助? 2930307
关于积分的说明 8445823
捐赠科研通 2602591
什么是DOI,文献DOI怎么找? 1420618
科研通“疑难数据库(出版商)”最低求助积分说明 660559
邀请新用户注册赠送积分活动 643408