YOLO-DA: An Efficient YOLO-Based Detector for Remote Sensing Object Detection

计算机科学 探测器 目标检测 人工智能 相似性(几何) 计算机视觉 计算 模式识别(心理学) 图像(数学) 算法 电信
作者
Jiehua Lin,Yan Zhao,Shigang Wang,Yu Tang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:30
标识
DOI:10.1109/lgrs.2023.3303896
摘要

In the past few decades, many efficient object detectors have been proposed for natural scene image object detection. However, due to the complex scenes and high interclass similarity of optical remote sensing (RS) images, applying these detectors to optical RS images directly is not very effective. Most of the recent detectors pursue higher accuracy while ignoring the balance between detection accuracy and speed, which hinders the practical application of these detectors, especially in embedded devices. To meet these challenges, a fast and accurate detector based on YOLO (You Only Look Once) with decoupled attention head (YOLO-DA) is proposed, which effectively improves detection performance while only introducing minimal complexity. Specifically, an attention module at the end of the detector is designed for guiding a neural network to extract more efficient features from the complex background while also minimizing the amount of additional computation. Moreover, a lightweight decoupled detection head with enhanced classification and localization capability is developed to detect objects with high interclass similarity. In the experiments, the proposed method effectively solves the problem of high interclass similarity and improves the mAP by 6.8% on the fine-grained optical RS dataset SIMD, compared with YOLOv5-L. In addition, the proposed method improves the mAP by 1.0%, 1.7% and 0.6% on the other three publicly open optical RS datasets, respectively. Experimental results on detection accuracy and inference time demonstrate that our method achieves the best trade-off between detection performance and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
lhy完成签到,获得积分10
1秒前
热情嘉懿发布了新的文献求助10
1秒前
小二郎应助Soyuu采纳,获得10
1秒前
ting完成签到,获得积分10
2秒前
2秒前
火星上香菇完成签到,获得积分10
2秒前
3秒前
husky完成签到,获得积分10
3秒前
3秒前
Ava应助Yiran采纳,获得10
4秒前
麦克完成签到,获得积分10
4秒前
smottom应助cj采纳,获得10
4秒前
5秒前
眯眯眼的松鼠完成签到,获得积分10
5秒前
芊芊墨完成签到,获得积分10
5秒前
风趣若烟发布了新的文献求助20
5秒前
5秒前
浅浅发布了新的文献求助10
6秒前
6秒前
husky发布了新的文献求助10
7秒前
CodeCraft应助undertaker采纳,获得10
7秒前
迷人的天抒应助热情嘉懿采纳,获得10
8秒前
香蕉觅云应助热情嘉懿采纳,获得10
8秒前
8秒前
科研通AI6.1应助lnww采纳,获得10
10秒前
七木发布了新的文献求助10
11秒前
瘦瘦紫文发布了新的文献求助10
11秒前
可爱的函函应助李浩采纳,获得10
13秒前
123完成签到,获得积分10
14秒前
可耐的凌旋完成签到 ,获得积分10
14秒前
14秒前
Hello应助飛666采纳,获得10
15秒前
15秒前
一条热带鱼完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207