YOLO-DA: An Efficient YOLO-Based Detector for Remote Sensing Object Detection

计算机科学 探测器 目标检测 人工智能 相似性(几何) 计算机视觉 计算 模式识别(心理学) 图像(数学) 算法 电信
作者
Jiehua Lin,Yan Zhao,Shigang Wang,Yu Tang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:30
标识
DOI:10.1109/lgrs.2023.3303896
摘要

In the past few decades, many efficient object detectors have been proposed for natural scene image object detection. However, due to the complex scenes and high interclass similarity of optical remote sensing (RS) images, applying these detectors to optical RS images directly is not very effective. Most of the recent detectors pursue higher accuracy while ignoring the balance between detection accuracy and speed, which hinders the practical application of these detectors, especially in embedded devices. To meet these challenges, a fast and accurate detector based on YOLO (You Only Look Once) with decoupled attention head (YOLO-DA) is proposed, which effectively improves detection performance while only introducing minimal complexity. Specifically, an attention module at the end of the detector is designed for guiding a neural network to extract more efficient features from the complex background while also minimizing the amount of additional computation. Moreover, a lightweight decoupled detection head with enhanced classification and localization capability is developed to detect objects with high interclass similarity. In the experiments, the proposed method effectively solves the problem of high interclass similarity and improves the mAP by 6.8% on the fine-grained optical RS dataset SIMD, compared with YOLOv5-L. In addition, the proposed method improves the mAP by 1.0%, 1.7% and 0.6% on the other three publicly open optical RS datasets, respectively. Experimental results on detection accuracy and inference time demonstrate that our method achieves the best trade-off between detection performance and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
臧晓蕾发布了新的文献求助10
1秒前
爱听歌的夏烟完成签到,获得积分10
1秒前
时尚的冰棍儿完成签到 ,获得积分0
2秒前
喽喽发布了新的文献求助30
2秒前
张小小发布了新的文献求助10
4秒前
果果应助高胜寒采纳,获得10
4秒前
4秒前
华仔应助livo采纳,获得10
4秒前
方向发布了新的文献求助10
5秒前
Sylvia完成签到,获得积分10
5秒前
orixero应助af采纳,获得10
6秒前
Linda琳完成签到,获得积分10
6秒前
Leyna完成签到,获得积分20
7秒前
Yangpan发布了新的文献求助10
8秒前
YangZhang发布了新的文献求助30
9秒前
10秒前
背后的小白菜完成签到,获得积分10
12秒前
叶玉雯完成签到 ,获得积分20
13秒前
充电小子完成签到 ,获得积分10
14秒前
粗犷的凌兰完成签到,获得积分10
14秒前
Akim应助方向采纳,获得10
15秒前
烟花应助木中一采纳,获得10
16秒前
李健应助走过的风采纳,获得10
16秒前
16秒前
ASHhan111完成签到,获得积分10
16秒前
叶玉雯关注了科研通微信公众号
18秒前
gua完成签到 ,获得积分10
18秒前
啦啦完成签到 ,获得积分10
19秒前
sube完成签到,获得积分10
19秒前
张大星完成签到 ,获得积分10
21秒前
秦屿发布了新的文献求助10
24秒前
ziwei完成签到 ,获得积分10
24秒前
Orange应助123asd采纳,获得10
25秒前
星辰大海应助123asd采纳,获得10
25秒前
25秒前
25秒前
Tohka完成签到 ,获得积分10
26秒前
科研通AI6应助dzh采纳,获得10
26秒前
一颗松应助马雪滢采纳,获得10
26秒前
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430