YOLO-DA: An Efficient YOLO-Based Detector for Remote Sensing Object Detection

计算机科学 探测器 目标检测 人工智能 相似性(几何) 计算机视觉 计算 模式识别(心理学) 图像(数学) 算法 电信
作者
Jiehua Lin,Yan Zhao,Shigang Wang,Yu Tang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:7
标识
DOI:10.1109/lgrs.2023.3303896
摘要

In the past few decades, many efficient object detectors have been proposed for natural scene image object detection. However, due to the complex scenes and high interclass similarity of optical remote sensing (RS) images, applying these detectors to optical RS images directly is not very effective. Most of the recent detectors pursue higher accuracy while ignoring the balance between detection accuracy and speed, which hinders the practical application of these detectors, especially in embedded devices. To meet these challenges, a fast and accurate detector based on YOLO (You Only Look Once) with decoupled attention head (YOLO-DA) is proposed, which effectively improves detection performance while only introducing minimal complexity. Specifically, an attention module at the end of the detector is designed for guiding a neural network to extract more efficient features from the complex background while also minimizing the amount of additional computation. Moreover, a lightweight decoupled detection head with enhanced classification and localization capability is developed to detect objects with high interclass similarity. In the experiments, the proposed method effectively solves the problem of high interclass similarity and improves the mAP by 6.8% on the fine-grained optical RS dataset SIMD, compared with YOLOv5-L. In addition, the proposed method improves the mAP by 1.0%, 1.7% and 0.6% on the other three publicly open optical RS datasets, respectively. Experimental results on detection accuracy and inference time demonstrate that our method achieves the best trade-off between detection performance and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KKDS发布了新的文献求助10
1秒前
PRAYER1029完成签到,获得积分10
1秒前
充电宝应助安陌煜采纳,获得30
1秒前
2秒前
2秒前
李东秋发布了新的文献求助10
5秒前
从别后忆相逢完成签到 ,获得积分10
5秒前
领导范儿应助Mike采纳,获得10
5秒前
张三问完成签到,获得积分10
6秒前
8秒前
King16完成签到,获得积分10
8秒前
调皮汽车完成签到 ,获得积分10
10秒前
11秒前
英俊的铭应助李东秋采纳,获得10
11秒前
12秒前
rio发布了新的文献求助20
12秒前
15秒前
16秒前
hellosci666完成签到,获得积分10
16秒前
安陌煜发布了新的文献求助30
17秒前
帅气的盼芙完成签到,获得积分20
18秒前
Zhang Wei发布了新的文献求助10
20秒前
上官若男应助幽默的画笔采纳,获得10
20秒前
小二郎应助muncy采纳,获得10
20秒前
大林完成签到,获得积分10
22秒前
wanci应助rio采纳,获得10
24秒前
24秒前
温柔野心家完成签到 ,获得积分10
24秒前
25秒前
25秒前
Aries完成签到,获得积分10
26秒前
26秒前
27秒前
雪雪子哇发布了新的文献求助10
28秒前
28秒前
踏实马里奥完成签到,获得积分10
28秒前
赘婿应助油焖青椒采纳,获得10
28秒前
orixero应助Zhang Wei采纳,获得10
29秒前
Li656943234发布了新的文献求助10
30秒前
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155969
求助须知:如何正确求助?哪些是违规求助? 2807310
关于积分的说明 7872521
捐赠科研通 2465654
什么是DOI,文献DOI怎么找? 1312280
科研通“疑难数据库(出版商)”最低求助积分说明 630031
版权声明 601905