YOLO-DA: An Efficient YOLO-Based Detector for Remote Sensing Object Detection

计算机科学 探测器 目标检测 人工智能 相似性(几何) 计算机视觉 计算 模式识别(心理学) 图像(数学) 算法 电信
作者
Jiehua Lin,Yan Zhao,Shigang Wang,Yu Tang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:30
标识
DOI:10.1109/lgrs.2023.3303896
摘要

In the past few decades, many efficient object detectors have been proposed for natural scene image object detection. However, due to the complex scenes and high interclass similarity of optical remote sensing (RS) images, applying these detectors to optical RS images directly is not very effective. Most of the recent detectors pursue higher accuracy while ignoring the balance between detection accuracy and speed, which hinders the practical application of these detectors, especially in embedded devices. To meet these challenges, a fast and accurate detector based on YOLO (You Only Look Once) with decoupled attention head (YOLO-DA) is proposed, which effectively improves detection performance while only introducing minimal complexity. Specifically, an attention module at the end of the detector is designed for guiding a neural network to extract more efficient features from the complex background while also minimizing the amount of additional computation. Moreover, a lightweight decoupled detection head with enhanced classification and localization capability is developed to detect objects with high interclass similarity. In the experiments, the proposed method effectively solves the problem of high interclass similarity and improves the mAP by 6.8% on the fine-grained optical RS dataset SIMD, compared with YOLOv5-L. In addition, the proposed method improves the mAP by 1.0%, 1.7% and 0.6% on the other three publicly open optical RS datasets, respectively. Experimental results on detection accuracy and inference time demonstrate that our method achieves the best trade-off between detection performance and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助80
1秒前
Ai77发布了新的文献求助10
1秒前
Sallxy发布了新的文献求助10
1秒前
Dormantparner发布了新的文献求助10
1秒前
2秒前
KouZL发布了新的文献求助30
2秒前
科研通AI6应助满家归寻采纳,获得10
2秒前
3秒前
一口气吃七碗饭完成签到 ,获得积分10
3秒前
3秒前
4秒前
科研通AI6应助朴实涵菡采纳,获得10
4秒前
4秒前
小马甲应助坚定茉莉采纳,获得10
5秒前
疯狂的晓山完成签到,获得积分10
5秒前
fanqinge完成签到,获得积分20
5秒前
5秒前
6秒前
斯文静竹发布了新的文献求助10
6秒前
小青椒应助xzy998采纳,获得30
6秒前
qzp关闭了qzp文献求助
6秒前
Xiaofeng发布了新的文献求助10
7秒前
lullaby完成签到,获得积分10
7秒前
7秒前
独孤幻月96应助嘻嘻采纳,获得10
8秒前
8秒前
胖肉肉完成签到,获得积分10
8秒前
8秒前
buta发布了新的文献求助10
8秒前
9秒前
milkmore发布了新的文献求助10
9秒前
9秒前
abner发布了新的文献求助10
9秒前
落后的道之完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
fanqinge发布了新的文献求助10
10秒前
充电宝应助粗心的浩然采纳,获得10
11秒前
胖肉肉发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871