YOLO-DA: An Efficient YOLO-Based Detector for Remote Sensing Object Detection

计算机科学 探测器 目标检测 人工智能 相似性(几何) 计算机视觉 计算 模式识别(心理学) 图像(数学) 算法 电信
作者
Jiehua Lin,Yan Zhao,Shigang Wang,Yu Tang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:30
标识
DOI:10.1109/lgrs.2023.3303896
摘要

In the past few decades, many efficient object detectors have been proposed for natural scene image object detection. However, due to the complex scenes and high interclass similarity of optical remote sensing (RS) images, applying these detectors to optical RS images directly is not very effective. Most of the recent detectors pursue higher accuracy while ignoring the balance between detection accuracy and speed, which hinders the practical application of these detectors, especially in embedded devices. To meet these challenges, a fast and accurate detector based on YOLO (You Only Look Once) with decoupled attention head (YOLO-DA) is proposed, which effectively improves detection performance while only introducing minimal complexity. Specifically, an attention module at the end of the detector is designed for guiding a neural network to extract more efficient features from the complex background while also minimizing the amount of additional computation. Moreover, a lightweight decoupled detection head with enhanced classification and localization capability is developed to detect objects with high interclass similarity. In the experiments, the proposed method effectively solves the problem of high interclass similarity and improves the mAP by 6.8% on the fine-grained optical RS dataset SIMD, compared with YOLOv5-L. In addition, the proposed method improves the mAP by 1.0%, 1.7% and 0.6% on the other three publicly open optical RS datasets, respectively. Experimental results on detection accuracy and inference time demonstrate that our method achieves the best trade-off between detection performance and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
爱笑的若雁完成签到,获得积分10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
Hiccupsssss完成签到,获得积分10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
1秒前
田田应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
chenqiumu应助zzzshy采纳,获得30
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
852应助高志博采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
深情安青应助Later采纳,获得10
4秒前
hxpxp完成签到,获得积分10
4秒前
dd发布了新的文献求助20
4秒前
5秒前
Bazinga完成签到,获得积分10
5秒前
浮游应助呀哦呀采纳,获得10
5秒前
科研通AI6应助酷炫傲安采纳,获得10
5秒前
5秒前
5秒前
科目三应助刻苦的冬易采纳,获得10
5秒前
5秒前
6秒前
仲乔妹发布了新的文献求助10
6秒前
6秒前
Hiccupsssss发布了新的文献求助10
6秒前
CipherSage应助li采纳,获得10
6秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884