YOLO-DA: An Efficient YOLO-Based Detector for Remote Sensing Object Detection

计算机科学 探测器 目标检测 人工智能 相似性(几何) 计算机视觉 计算 模式识别(心理学) 图像(数学) 算法 电信
作者
Jiehua Lin,Yan Zhao,Shigang Wang,Yu Tang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:30
标识
DOI:10.1109/lgrs.2023.3303896
摘要

In the past few decades, many efficient object detectors have been proposed for natural scene image object detection. However, due to the complex scenes and high interclass similarity of optical remote sensing (RS) images, applying these detectors to optical RS images directly is not very effective. Most of the recent detectors pursue higher accuracy while ignoring the balance between detection accuracy and speed, which hinders the practical application of these detectors, especially in embedded devices. To meet these challenges, a fast and accurate detector based on YOLO (You Only Look Once) with decoupled attention head (YOLO-DA) is proposed, which effectively improves detection performance while only introducing minimal complexity. Specifically, an attention module at the end of the detector is designed for guiding a neural network to extract more efficient features from the complex background while also minimizing the amount of additional computation. Moreover, a lightweight decoupled detection head with enhanced classification and localization capability is developed to detect objects with high interclass similarity. In the experiments, the proposed method effectively solves the problem of high interclass similarity and improves the mAP by 6.8% on the fine-grained optical RS dataset SIMD, compared with YOLOv5-L. In addition, the proposed method improves the mAP by 1.0%, 1.7% and 0.6% on the other three publicly open optical RS datasets, respectively. Experimental results on detection accuracy and inference time demonstrate that our method achieves the best trade-off between detection performance and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
龙行天下关注了科研通微信公众号
刚刚
placebo完成签到,获得积分10
1秒前
渴望者发布了新的文献求助10
2秒前
CipherSage应助rngay采纳,获得10
3秒前
4秒前
咩咩完成签到 ,获得积分10
5秒前
逃之姚姚发布了新的文献求助10
5秒前
医研发布了新的文献求助10
5秒前
星辰大海应助ZHY采纳,获得10
5秒前
6秒前
6秒前
xuke完成签到,获得积分10
6秒前
6秒前
isme完成签到,获得积分10
6秒前
6秒前
6秒前
今后应助小心薛了你采纳,获得10
7秒前
7秒前
Owen应助和谐青柏采纳,获得10
7秒前
7秒前
Anita发布了新的文献求助10
9秒前
所所应助小心薛了你采纳,获得10
9秒前
贾明阳发布了新的文献求助10
11秒前
水123发布了新的文献求助10
11秒前
11秒前
研友_VZGzan完成签到 ,获得积分10
11秒前
SciGPT应助小心薛了你采纳,获得10
11秒前
Zenia发布了新的文献求助10
11秒前
11秒前
11秒前
对方正在看文献完成签到,获得积分10
12秒前
小蘑菇应助渴望者采纳,获得10
12秒前
ZHY完成签到,获得积分10
12秒前
12秒前
12秒前
cgz发布了新的文献求助10
13秒前
科研通AI2S应助风清扬采纳,获得10
14秒前
Lucas应助风清扬采纳,获得10
14秒前
共享精神应助风清扬采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601539
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847124
捐赠科研通 4681263
什么是DOI,文献DOI怎么找? 2539418
邀请新用户注册赠送积分活动 1506305
关于科研通互助平台的介绍 1471297