YOLO-DA: An Efficient YOLO-Based Detector for Remote Sensing Object Detection

计算机科学 探测器 目标检测 人工智能 相似性(几何) 计算机视觉 计算 模式识别(心理学) 图像(数学) 算法 电信
作者
Jiehua Lin,Yan Zhao,Shigang Wang,Yu Tang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:19
标识
DOI:10.1109/lgrs.2023.3303896
摘要

In the past few decades, many efficient object detectors have been proposed for natural scene image object detection. However, due to the complex scenes and high interclass similarity of optical remote sensing (RS) images, applying these detectors to optical RS images directly is not very effective. Most of the recent detectors pursue higher accuracy while ignoring the balance between detection accuracy and speed, which hinders the practical application of these detectors, especially in embedded devices. To meet these challenges, a fast and accurate detector based on YOLO (You Only Look Once) with decoupled attention head (YOLO-DA) is proposed, which effectively improves detection performance while only introducing minimal complexity. Specifically, an attention module at the end of the detector is designed for guiding a neural network to extract more efficient features from the complex background while also minimizing the amount of additional computation. Moreover, a lightweight decoupled detection head with enhanced classification and localization capability is developed to detect objects with high interclass similarity. In the experiments, the proposed method effectively solves the problem of high interclass similarity and improves the mAP by 6.8% on the fine-grained optical RS dataset SIMD, compared with YOLOv5-L. In addition, the proposed method improves the mAP by 1.0%, 1.7% and 0.6% on the other three publicly open optical RS datasets, respectively. Experimental results on detection accuracy and inference time demonstrate that our method achieves the best trade-off between detection performance and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SZU_Julian完成签到,获得积分10
3秒前
gy完成签到,获得积分10
4秒前
赘婿应助alvin采纳,获得10
5秒前
小蘑菇应助开朗可行采纳,获得10
6秒前
Jayzie完成签到 ,获得积分10
6秒前
miuu发布了新的文献求助10
8秒前
怕孤独的自行车完成签到,获得积分10
10秒前
11秒前
学术rookie完成签到,获得积分10
13秒前
拉那发布了新的文献求助20
13秒前
酷酷世德完成签到,获得积分10
15秒前
16秒前
干净思远发布了新的文献求助10
21秒前
茄子酱发布了新的文献求助10
22秒前
23秒前
Lucas应助聪明的青雪采纳,获得10
23秒前
撒拉溪吧完成签到 ,获得积分10
24秒前
Orange应助涛tao采纳,获得10
24秒前
LaTeXer应助曾诚采纳,获得50
28秒前
alvin发布了新的文献求助10
28秒前
朱朱朱完成签到,获得积分10
29秒前
小手揣兜完成签到,获得积分10
31秒前
诗谙发布了新的文献求助10
32秒前
33秒前
冷静雨南完成签到 ,获得积分10
33秒前
ff发布了新的文献求助10
37秒前
萤火之森完成签到 ,获得积分10
38秒前
wwwww完成签到,获得积分10
39秒前
诗谙完成签到,获得积分10
42秒前
冷傲凝琴发布了新的文献求助10
43秒前
45秒前
ff完成签到,获得积分10
46秒前
yznfly应助趣多多采纳,获得50
46秒前
半夏发布了新的文献求助10
50秒前
CodeCraft应助mSnBmaterial采纳,获得10
50秒前
大力出奇迹完成签到,获得积分10
52秒前
ZZICU完成签到,获得积分10
52秒前
54秒前
56秒前
思源应助聪明的青雪采纳,获得10
56秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141198
捐赠科研通 3241162
什么是DOI,文献DOI怎么找? 1791358
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803396